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PREFACE (1877)

PHYSICAL SCIENCE, which up to the end ofthe eighteenth

century had been fully occupied in forming a conception
of natural phenomena as the result of forces acting

between one body and another, has now fairly entered

on the next stage of progress that in which the energy
of a material system is conceived as determined by the

configuration and motion of that system, and in which

the ideas of configuration, motion, and force are

generalised to the utmost extent warranted by their

physical definitions.

To become acquainted with these fundamental ideas,

to examine them under all their aspects, and habitually

to guide the current of thought along the channels of

strict dynamical reasoning, must be the foundation of

the training of the student of Physical Science.

The following statement of the fundamental doctrines

of Matter and Motion is therefore to be regarded as

an introduction to the study of Physical Science in

general.



NOTE

IN this reprint of Prof. Clerk Maxwell's classical

tractate on the principles of dynamics, the changes have

been confined strictly to typographical and a few verbal

improvements. After trial, the conclusion has been
reached that any additions to the text would alter the

flavour of the work, which would then no longer be
characteristic of its author. Accordingly only brief

footnotes have been introduced: and the few original
footnotes have been distinguished from them by
Arabic numeral references instead of asterisks and other

marks. A new index has been prepared.
A general exposition of this kind cannot be expected,

and doubtless was not intended, to come into use as a

working textbook : for that purpose methods of syste-
matic calculation must be prominent. But as a reasoned

conspectus of the Newtonian dynamics, generalizing

gradually from simple particles of matter to physical

systems which are beyond complete analysis, drawn

up by one of the masters of the science, with many
interesting side-lights, it must retain its power of sug-

gestion even though parts of the vector exposition may
now seem somewhat abstract. The few critical footnotes

and references to Appendices that have been added may
help to promote this feature of suggestion and stimulus.

The treatment of the fundamental principles of

dynamics has however been enlarged on the author's

own lines by the inclusion of the Chapter "On the

Equations of Motion of a Connected System" from
vol. ii of Electricity and Magnetism. For permission to

make use of this chapter the thanks of the publishers
are due to the Clarendon Press of the University of

Oxford.
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With the same end in view two Appendices have
been added by the editor. One of them treats the

Principle of Relativity of motion, which has recently
become very prominent in wider physical connexions,
on rather different lines from those in the text. The other

aims at development of the wider aspects of the Prin-

ciple of Least Action, which has been asserting its

position more and more as the essential principle of con-

nexion between the various domains of Theoretical

Physics.
These additions are of course much more advanced

than the rest of the book : but they will serve to complete
it by presenting the analytical side of dynamical science,
on which it justly aspires to be the definite foundation

for all Natural Philosophy.
The editor desires to express his acknowledgment

to the Cambridge University Press, and especially to

Mr J. B. Peace, for assistance and attention.

J.L.



BIOGRAPHICAL NOTE

JAMES CLERK MAXWELL was born in Edinburgh in 1831,
the only son of John Clerk Maxwell, of Glenlair, near

Dalbeattie, a family property in south-west Scotland to

which the son succeeded. After an early education at

home, and at the University of Edinburgh, he pro-
ceeded to Cambridge in 1850, first to Peterhouse,

migrating afterwards to Trinity College. In the

Mathematical Tripos of 1854, the Senior Wrangler was
E. J. Routh, afterwards a mathematical teacher and

investigator of the highest distinction, and Clerk Max-
well was second: they were placed as equal soon after

in the Smith's Prize Examination.

He was professor of Natural Philosophy at Aberdeen
from 1856 to 1860, in King's College, London from
1860 to 1865, and then retired to Glenlair for six years,

during which the teeming ideas of his mind doubtless

matured and fell into more systematic forms. He was

persuaded to return into residence at Cambridge in

1871, to undertake the task of organizing the new
Cavendish Laboratory. But after a time his health

broke, and he died in 1879 at the age of 48 years.
His scientific reputation during his lifetime was

upheld mainly by British mathematical physicists,

especially by the Cambridge school. But from the time
that Helmholtz took up the study of his theory of

electric action and light in 1870, and discussed it in

numerous powerful memoirs, the attention given abroad
to his work gradually increased, until as in England it

became the dominating force in physical science.

Nowadays by universal consent his ideas, as the

mathematical interpreter and continuator of Faraday,
rank as the greatest advance in our understanding of

the laws of the physical universe that has appeared



x .
BIOGRAPHICAL NOTE

since the time of Newton. As with Faraday, his pro-
found investigations into nature were concomitant with

deep religious reverence for nature's cause. See the

Life by L. Campbell and W. Garnett (Macmillan, 1882).
The treatise on Electricity and Magnetism and the

Theory of Heat contain an important part of his work.

His Scientific Papers were republished by the Cam-

bridge University Press in two large memorial volumes.

There are many important letters from him in the

Memoir and Scientific Correspondence of Sir George
Stokes, Cambridge, 1904.
The characteristic portrait here reproduced, perhaps

for the first time, is from a carte de visile photograph
taken probably during his London period.

J. L.
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MATTER AND MOTION

CHAPTER I

INTRODUCTION

i . NATURE OF PHYSICAL SCIENCE

PHYSICAL SCIENCE is that department of knowledge
which relates to the order of nature, or, in other words,
to the regular succession of events.

The name of physical science, however, is often

applied in a more or less restricted manner to those

branches of science in which the phenomena considered

are of the simplest and most abstract kind, excluding
the consideration of the more complex phenomena, such

as those observed in living beings.
The simplest case of all is that in which an event

or phenomenon can be described as a change in the

arrangement of certain bodies. Thus the motion of the

moon may be described by stating the changes in her

position relative to the earth in the order in which they
follow one another.

In other cases we may know that some change of

arrangement has taken place, but we may not be able

to ascertain what that change is.

Thus when water freezes we know that the molecules

or smallest parts of the substance must be arranged

differently in ice and in water. We also know that this

arrangement in ice must have a certain kind of sym-
metry, because the ice is in the form of symmetrical

crystals, but we have as yet no precise knowledge of

the actual arrangement of the molecules in ice. But
whenever we can completely describe the change of
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arrangement we have a knowledge, perfect so far as it

extends, of what has taken place, though we may still

have to learn the necessary conditions under which
a similar event will always take place.
Hence the first part of physical science relates to the

relative position and motion of bodies.

2. DEFINITION OF A MATERIAL SYSTEM

In all scientific procedure we begin by marking out a

certain region or subject as the field of our investiga-
tions. To this we must confine our attention, leaving
the rest of the universe out of account till we have

completed the investigation in which we are engaged.
In physical science, therefore, the first step is to define

clearly the material system which we make the subject
of our statements. This system may be of any degree
of complexity. It may be a single material particle, a

body of finite size, or any number of such bodies, and
it may even be extended so as to include the whole
material universe.

3. DEFINITION OF INTERNAL AND EXTERNAL

All relations or actions between one part of this sys-
tem and another are called Internal relations or actions.

Those between the whole or any part of the system
and bodies not included in the system are called Exter-

nal relations or actions. These we study only so far as

they affect the system itself, leaving their effect on
external bodies out of consideration. Relations and
actions between bodies not included in the system are

to be left out of consideration. We cannot investigate
them except by making our system include these other

bodies.

4. DEFINITION OF CONFIGURATION

When a material system is considered with respect
to the relative position of its parts, the assemblage of

relative positions is called the Configuration of the

system.
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A knowledge of the configuration of the system at a

given instant implies a knowledge of the position of

every point of the system with respect to every other

point at that instant.

5. DIAGRAMS

The configuration of material systems may be repre-
sented in models, plans, or diagrams. The model or

diagram is supposed to resemble the material system

only in form, not necessarily in any other respect.
A plan or a map represents on paper in two dimen-

sions what may really be in three dimensions, and can

only be completely represented by a model. We shall

use the term Diagram to signify any geometrical figure,
whether plane or not, by means of which we study the

properties of a material system. Thus, when we speak
of the configuration of a system, the image which we
form in our minds is that of a diagram, which completely

represents the configuration, but which has none of the

other properties of the material system. Besides dia-

grams of configuration we may have diagrams of velocity,
of stress, etc., which do not represent the form of the

system, but by means of which its relative velocities or

its internal forces may be studied.

6. A MATERIAL PARTICLE

A body so small that, for the purposes of our investi-

gation, the distances between its different parts may be

neglected, is called a material particle.

Thus in certain astronomical investigations the planets,
and even the sun, may be regarded each as a material

particle, because the difference of the actions of different

parts of these bodies does not come under our notice.

But we cannot treat them as material particles when we

investigate their rotation. Even an atom, when we
consider it as capable of rotation, must be regarded as

consisting of many material particles.
The diagram of a material particle is of course a

mathematical point, which has no configuration.
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7. RELATIVE POSITION OF TWO MATERIAL PARTICLES

The diagram of two material particles consists of two

points, as, for instance, A and B.
The position of B relative to A is indicated by the

direction and length of the straight line AB drawn

from A to B. If you start from A and travel in the

direction indicated by the line AB and for a distance

equal to the length of that line, you will get to B.
This direction and distance may be indicated equally

well by any other line, such as ab, which is parallel

and equal to AB. The position of A with respect to

B is indicated by the direction and length of the line

BA, drawn from B to A, or the line ba, equal and

parallel to BA.
It is evident that BA = AB.
In naming a line by the letters at its extremities,

the order of the letters is always that in which the line

is to be drawn.

8. VECTORS

The expression AB, in geometry, is merely the

name of a line. Here it indicates the operation by
which the line is drawn, that of carrying a tracing

point in a certain directionj:or
a certain distance. As

indicating an operation, AB is called a Vector, and

the operation is completely defined by the direction

and distance of the transference. The starting point,

which is called the Origin of the vector, may be any-
where.
To define a finite straight line we must state its

origin as well as its direction and length. All vectors,

however, are regarded as equal which are parallel (and

drawn towards the same parts) and of the same magni-
tude.

Any quantity, such, for instance, as a velocity or a
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force*, which has a definite direction and a definite

magnitude may be treated as a vector, and may
be indicated in a diagram by a straight line whose
direction is parallel to the vector, and whose length

represents, according to a determinate scale, the mag-
nitude of the vector.

9. SYSTEM OF THREE PARTICLES

Let us next consider a system of three particles.
Its configuration is represented by a diagram of

three points, A, B, C.
The position of B with respect to D. C

A is indicated by the vector AB, I //
and that of C with respect to B by A/ I

the vector EC. A*- 'B

It is manifest that from these data, Fig. i.

when A is known, we can find B and
then C, so that the configuration of the three points is

completely determined.

The position of C with respect to A is indicated by
the vector AC, and by the last remark the value of AC
must be deducible from those of AB and BC.
The result of the operation AC is to carry the

tracing point from A to C. But the result is the same
if the tracing point is carried first from A to B and
then from B to C, and this is the sum of the operations

AB + BC.
10. ADDITION OF VECTORS

Hence the rule for the addition of vectors may be
stated thus: From any point as origin draw the suc-

cessive vectors in series, so that each vector begins at

the end of the preceding one. The straight line from
the origin to the extremity of the series represents the

vector which is the sum of the vectors.

* A force is more completely specified as a vector localised in

its line of action, called by Clifford a rotor; moreover it is only
when the body on which it acts is treated as rigid that the point
of application is inessential.
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The order of addition is indifferent, for if we write

BC + AB the_pperation indicated may be performed

by drawing AD parallel and equal to BC, and then

joining DC, which, by Euclid, I. 33, is parallel and

equal to AB, so that by these two operations we arrive

at the point C in whichever order we perform them.
The same is true for any number of vectors, take

them in what order we please.

1 1 . SUBTRACTION OF ONE VECTOR FROM ANOTHER

To express the position of C with respect to B in

terms of the positions of B and C with respect to A,
we observe that we can get from B to C either by
passing along the straight line BC or by passing from
B to A and then from A to C. Hence

= AC+ BA since the order of addition is indifferent

= AC AB since AB is equal and opposite to BA .

Or the vector BC, which expresses the position of C
with respect to B, is found by subtracting the vector of

B from the vector of C, these vectors being drawn to

B and C respectively from any common origin A.

12. ORIGIN OF VECTORS

The positions of any number of particles belonging
to a material system may be defined by means of the

vectors drawn to each of these particles from some one

point. This point is called the origin of the vectors,

or, more briefly, the Origin.
This system of vectors determines the configura-

tion of the whole system; for if we wish to know
the position of any point B with respect to any other

point A, it may be found from the vectors OA and OB
by the equation

AB=OB-OA.
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We may choose any point whatever for the origin,
and there is for the present no reason why we should
choose one point rather than another. The configura-
tion of the system that is to say, the position of its

parts with respect to each other remains the same,
whatever point be chosen as origin. Many inquiries,

however, are simplified by a proper selection of the

origin.

13. RELATIVE POSITION OF Two SYSTEMS

If the configurations of two different systems are

known, each system having its own

origin, and if we then wish to include \

both systems in a larger system,

having, say, the same origin as the _,

first of the two systems, we must
ascertain the position of the origin of

the second system with respect to that of the first, and
we must be able to draw lines in the second system
parallel to those in the first.

Then by Article 9 the position of a point P of the

second system, with respect to the first origin, O, is

represented by the sum of the vector O'P of that point
with respect to the second origin, O', and the vector OO'
of the second origin, O', with respect to the first, O.

14. THREE DATA FOR THE COMPARISON OF

Two SYSTEMS

We have an instance of this formation of a large

system out of two or more smaller systems, when two

neighbouring nations, having each surveyed and

mapped its own territory, agree to connect their sur-

veys so as to include both countries in one system.
For this purpose three things are necessary.

i st. A comparison of the origin selected by the one

country with that selected by the other.

2nd. A comparison of the directions of reference

used in the two countries.
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3rd. A comparison of the standards of length used
in the two countries.

1. In civilised countries latitude is always reckoned
from the equator, but longitude is reckoned from an

arbitrary point, as Greenwich or Paris. Therefore,
to make the map of Britain fit that of France, we
must ascertain the difference of longitude between the

Observatory of Greenwich and that of Paris.

2. When a survey has been made without astro-

nomical instruments, the directions of reference have
sometimes been those given by the magnetic compass.
This was, I beb'eve, the case in the original surveys of

some of the West India islands. The results of this

survey, though giving correctly the local configuration
of the island, could not be made to fit properly into a

general map of the world till the deviation of the

magnet from the true north at the time of the survey
was ascertained.

3. To compare the survey of France with that of

Britain, the metre, which is the French standard of

length, must be compared with the yard, which is the

British standard of length.
The yard is defined by Act of Parliament 18 and

19 Viet. c. 72, July 30, 1855, which enacts "that the

straight line or distance between the centres of the

transverse lines in the two gold plugs in the bronze
bar deposited in the office of the Exchequer shall

be the genuine standard yard at 62 Fahrenheit,
and if lost, it shall be replaced by means of its copies."
The metre derives its authority from a law of the

French Republic in 1795. It is defined to be the

distance between the ends of a certain rod of platinum
made by Borda, the rod being at the temperature of

melting ice. It has been found by the measurements
of Captain Clarke that the metre is equal to 39-37043
British inches.
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15. ON THE IDEA OF SPACE*

We have now gone through most of the things to be
attended to with respect to the configuration of a

material system. There remain, however, a few points

relating to the metaphysics of the subject, which have a

very important bearing on physics.
We have described the method of combining several

configurations into one system which includes them all.

In this way we add to the small region which we can

explore by stretching our limbs the more distant regions
which we can reach by walking or by being carried.

To these we add those of which we learn by the reports
of others, and those inaccessible regions whose positions
we ascertain only by a process of calculation, till at last

we recognise that every place has a definite position
with respect to every other place, whether the one

place is accessible from the other or not.

Thus from measurements made on the earth's surface

we deduce the position of the centre of the earth relative

to known objects, and we calculate the number of

cubic miles in the earth's volume quite independently
of any hypothesis as to what may exist at the centre of

the earth, or in any other place beneath that thin layer
of the crust of the earth which alone we can directly

explore.
1 6. ERROR OF DESCARTES

It appears, then, that the distance between one thing
and another does not depend on any material thing
between them, as Descartes seems to assert when he

says (Princip. Phil., II. 18) that if that which is in a

hollow vessel were taken out of it without anything
*

Following Newton's method of exposition in the Principia,
a space is assumed and a flux of time is assumed, forming together
a framework into which the dynamical explanation of phenomena
is set. It is part of the problem of physical astronomy to test this

assumption, and to determine this frame with increasing precision.
Its philosophical basis can be regarded as a different subject, to
which the recent discussions on relativity as regards space and
time would be attached. See Appendix I.
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entering to fill its place, the sides of the vessel, having
nothing between them, would be in contact.

This assertion is grounded on the dogma of Des-

cartes, that the extension in length, breadth, and depth
which constitute space is the sole essential property of

matter. "The nature of matter," he tells us, "or of

body considered generally, does not consist in a thing
being hard, or heavy, or coloured, but only in its

being extended in length, breadth, and depth
"
(Princip.,

II. 4). By thus confounding the properties of matter
with those of space, he arrives at the logical conclusion
that if the matter within a vessel could be entirely

removed, the space within the vessel would no longer
exist. In fact he assumes that all space must be always
full of matter.

I have referred to this opinion of Descartes in order
to show the importance of sound views in elementary
dynamics. The primary property of matter was in-

deed distinctly announced by Descartes in what he
calls the "First Law of Nature" (Princip., II. 37):
"That every individual thing, so far as in it lies, per-
severes in the same state, whether of motion or of rest."*

We shall see when we come to Newton's laws of

motion that in the words "so far as in it lies," pro-

perly understood, is to be found the true primary
definition of matter, and the true measure of its quantity.
Descartes, however, never attained to a full under-

standing of his own words (quantum in se esf), and so

fell back on his original confusion of matter with space

space being, according to him, the only form of

substance, and all existing things but affections of space.
This errorf runs through every part of Descartes' great
work, and it forms one of the ultimate foundations of

the system of Spinoza. I shall not attempt to trace

it down to more modern times, but I would advise

* Compare the idea of Least Action: Appendix II.

f Some recent forms of relativity have come back to his ideas.

Cf. p. 140.
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those who study any system of metaphysics to examine

carefully that part of it which deals with physical ideas.

We shall find it more conducive to scientific pro-
gress to recognise, with Newton, the ideas of time and

space as distinct, at least in thought, from that of the

material system whose relations these ideas serve to

co-ordinate*.

17. ON THE IDEA OF TIME

The idea of Time in its most primitive form is pro-

bably the recognition of an order of sequence in our
states of consciousness. If my memory were perfect, I

might be able to refer every event within my own
experience to its proper place in a chronological series.

But it would be difficult, if not impossible, for me to

compare the interval between one pair of events and
that between another pair to ascertain, for instance,
whether the time during which I can work without

feeling tired is greater or less now than when I first

began to study. By our intercourse with other persons,
and by our experience of natural processes which go
on in a uniform or a rhythmical manner, we come
to recognise the possibility of arranging a system of

chronology in which all events whatever, whether re-

lating to ourselves or to others, must find their places.
Of any two events, say the actual disturbance at the

star in Corona Borealis, which caused the luminous
effects examined spectroscopically by Mr Huggins on
the 1 6th May, 1866, and the mental suggestion which
first led Professor Adams or M. Leverrier to begin the

researches which led to the discovery, by Dr Galle, on
the 23rd September, 1846, of the planet Neptune, the

first named must have occurred either before or after

the other, or else at the same time.

Absolute, true, and mathematical Time is conceived

by Newton as flowing at a constant rate, unaffected by
the speed or slowness of the motions of material things.

* See Appendix I.
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It is also called Duration. Relative, apparent, and
common time is duration as estimated by the motion
of bodies, as by days, months, and years. These
measures of time may be regarded as provisional, for

the progress of astronomy has taught us to measure the

inequality in the lengths of days, months, and years,
and thereby to reduce the apparent time to a more
uniform scale, called Mean Solar Time.

1 8. ABSOLUTE SPACE

Absolute space is conceived as remaining always
similar to itself and immovable. The arrangement
of the parts of space can no more be altered than the

order of the portions of time. To conceive them to

move from their places is to conceive a place to move

away from itself.

But as there is nothing to distinguish one portion of

time from another except the different events which
occur in them, so there is nothing to distinguish one

part of space from another except its relation to the

place of material bodies. We cannot describe the time

of an event except by reference to some other event, or

the place of a body except by reference to some other

body. All our knowledge, both of time and place, is

essentially relative*. When a man has acquired the

habit of putting words together, without troubling
himself to form the thoughts which ought to correspond
to them, it is easy for him to frame an antithesis between
this relative knowledge and a so-called absolute know-

ledge, and to point out our ignorance of the absolute

position of a point as an instance of the limitation of our
faculties. Any one, however, who will try to imagine
the state of a mind conscious of knowing the absolute

position of a point will ever after be content with our

relative knowledge.
* The position seems to be that our knowledge is relative, but

needs definite space and time as a frame for its coherent ex-

pression.
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19. STATEMENT OF THE GENERAL MAXIM OF

PHYSICAL SCIENCE

There is a maxim which is often quoted, that "The
same causes will always produce the same effects."

To make this maxim intelligible we must define

what we mean by the same causes and the same effects,

since it is manifest that no event ever happens more
than once, so that the causes and effects cannot be
the same in all respects. What is really meant is that

if the causes differ only as regards the absolute time
or the absolute place at which the event occurs, so

likewise will the effects.

The following statement, which is equivalent to the

above maxim, appears to be more definite, more ex-

plicitly connected with the ideas of space and time, and
more capable of application to particular cases :

"The difference between one event and another does

not depend on the mere difference of the times or the

places at which they occur, but only on differences in

the nature, configuration, or motion of the bodies con-

cerned."

It follows from this, that if an event has occurred at

a given time and place it is possible for an event exactly
similar to occur at any other time and place.
There is another maxim which must not be con-

founded with that quoted at the beginning of this

article, which asserts "That like causes produce like

effects."

This is only true when small variations in the initial

circumstances produce only small variations in the final

state of the system*. In a great many physical pheno-
mena this condition is satisfied; but there are other

* This implies that it is only in so far as stability subsists that

principles of natural law can be formulated : it thus perhaps puts
a limitation on any postulate of universal physical determinacy
such as Laplace was credited with.
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cases in which a small initial variation may produce a

very great change in the final state of the system, as

when the displacement of the
"
points

"
causes a railway

train to run into another instead of keeping its proper
course*.

* We may perhaps say that the observable regularities of

nature belong to statistical molecular phenomena which have
settled down into permanent stable conditions. In so far as the
weather may be due to an unlimited assemblage of local in-

stabilities, it may not be amenable to a finite scheme of law at all.



CHAPTER II

ON MOTION

20. DEFINITION OF DISPLACEMENT

WE have already compared the position of different

points of a system at the same instant of time. We have
next to compare the position of a point at a given instant

with its position at a former instant, called the Epoch.
The vector which indicates the final position of a

point with respect to its position at the epoch is called

the Displacement of that point. Thus if A 1 is the initial

and A 2 the final position of the point A, the lineAA Z is

the displacement of A, and any vector oa drawn from

the origin o parallel and equal toA^ indicates this dis-

placement.
21. DIAGRAM OF DISPLACEMENT

If another point of the system is displaced from B to

B2 the vector ob paral-

lel and equal to

indicates the displace-
ment of B.

In like manner the

displacement of any
number of points may
be represented by vec-

tors drawn from the

same origin o. This

system of vectors is

called the Diagram of

Displacement. It is

not necessary to draw
actual lines to represent
these vectors

;
it is suffi-

cient to indicate the Fig. 3.

points a, b, etc., at the extremities of the vectors. The
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diagram of displacement may therefore be regarded as

consisting of a number of points, , 6, etc., correspond-
ing with the material particles, A, B, etc., belonging
to the system, together with a point o, the position of
which is arbitrary, and which is the assumed origin of
all the vectors.

22. RELATIVE DISPLACEMENT

The line ab in the diagram of displacement repre-
sents the displacement of the point B with respect
to A.
For if in the diagram of displacement (fig. 3) we

draw ak parallel and equal to B^A^ and in the same

direction, and join kb, it is easy to show that kb is

equal and parallel to A 2B 2 .

For^the vector kb is the sum of the vectors ka, ao,

and ob, and A 2B 2 is_the sum of A 2A t , A^Blt and

B tB2 . But of these ka is the same as A-^B^ ao is the

same as A 2A ly
and ob is the same as B^B 2t and by

Article 10 the order of summation is indifferent, so

that the vector kb is the same, in direction and magni-

tude, as A 2B2 . Now ka or A^ represents the original

position of B with respect to A, and kb or A 2B 2

represents the final position of B with respect to A.

Hence ab represents the displacement of B with respect
to A, which was to be proved.

In Article 20 we purposely omitted to say whether

the origin to which the original configuration was

referred, and that to which the final configuration is

referred, are absolutely the same point, or whether,

during the displacement of the system, the origin also

is displaced.
We may now, for the sake of argument, suppose that

the origin is absolutely fixed, and that the displace-

ments represented by oa
t ob, etc., are the absolute dis-

placements. To pass from this case to that in which



n] DISPLACEMENT 17

the origin is displaced we have only to take A, one of

the movable points, as origin. The absolute displace-

ment of A being represented by oa, the displacement
of B with respect to A is represented, as we have seen,

by ab, and so on for any other points of the system.
The arrangement of the points a, b, etc., in the dia-

gram of displacement is therefore the same, whether
we reckon the displacements with respect to a fixed

point or a displaced point; the only difference is that

we adopt a different origin of vectors in the diagram of

displacement, the rule being that whatever point we
take, whether fixed or moving, for the origin of the

diagram of configuration, we take the corresponding

point as origin in the diagram of displacement. If we
wish to indicate the fact that we are entirely ignorant
of the absolute displacement in space of any point of

the system, we may do so by constructing the diagram
of displacement as a mere system of points, without

indicating in any way which of them we take as the

origin.
This diagram of displacement (without an origin)

will then represent neither more nor less than all we
can ever know about the displacement of the system.
It consists simply of a number of points, a, b, c, etc.,

corresponding to the points A, B, C, etc., of the material

system, and a vector, as ab represents the displacement
of B with respect to A.

23. UNIFORM 1 DISPLACEMENT

When the displacements of all points of a material

system with respect to an external point are the same
in direction and magnitude, the diagram of displace-
ment is reduced to two points one corresponding to

the external point, and the other to each and every point
of the displaced system. In this case the points of the

1 When the simultaneous values of a quantity for different

bodies or places are equal, the quantity is said to be uniformly
distributed in space.
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system are not displaced with respect to one another,
but only with respect to the external point.
This is the kind of displacement which occurs when

a body of invariable form moves parallel to itself. It

may be called uniform displacement.

24. ON MOTION

When the change of configuration of a system is

considered with respect only to its state at the beginning
and the end of the process of change, and without
reference to the time during which it takes place, it is

called the displacement of the system.
When we turn our attention to the process of change

itself, as taking place during a certain time and in a

continuous manner, the change of configuration is

ascribed to the motion of the system.

25. ON THE CONTINUITY OF MOTION

When a material particle is displaced so as to pass
from one position to another, it can only do so by
travelling along some course or path from the one

position to the other.

At any instant during the motion the particle will be
found at some one point

p f^
II of the path, and if we se-

^^^ lect any point of the path,

j\ /r S~"lT^ t^ie Part^c^e W*U Pass t^iat

\_) .
" D point once at least 1

during
its motion.

This is what is meant

by saying that the particle describes a continuous path.
The motion of a material particle which has continuous

existence in time and space is the type and exemplar
of every form of continuity.

1 If the path cuts itself so as to form a loop, as P, Q, R (fig. 4),

the particle will pass the point of intersection, Q, twice, and if

the particle returns on its own path, as in the path A , B, C, D, it

may pass the same point, S, three or more times.
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26. ON CONSTANT 1 VELOCITY

If the motion of a particle is such that in equal
intervals of time, however short, the displacements of

the particle are equal and in the same direction, the

particle is said to move with constant velocity.
It is manifest that in this case the path of the body

will be a straight line, and the length of any part of the

path will be proportional to the time of describing it.

The rate or speed of the motion is called the velocity
of the particle, and its magnitude is expressed by saying
that it is such a distance in such a time, as, for instance,
ten miles an hour, or one metre per second. In general
we select a unit of time, such as a second, and measure

velocity by the distance described in unit of time.

If one metre be described in a second and if the

velocity be constant, a thousandth or a millionth of a

metre will be described in a thousandth or a millionth

of a second. Hence, if we can observe or calculate the

displacement during any interval of time, however short,
we may deduce the distance which would be described

in a longer time with the same velocity. This result,

which enables us to state the velocity during the short

interval of time, does not depend on the body's actually

continuing to move at the same rate during the longer
time. Thus we may know that a body is moving at

the rate of ten miles an hour, though its motion
at this rate may last for only the hundredth of a

second.

27. ON THE MEASUREMENT OF VELOCITY

WHEN VARIABLE

When the velocity of a particle is not constant, its

value at any given instant is measured by the distance

which would be described in unit of time by a body
having the same velocity as that which the particle has
at that instant.

1 When the successive values of a quantity for successive
instants of time are equal, the quantity is said to be constant.
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Thus when we say that at a given instant, say one
second after a body has begun to fall, its velocity is 980
centimetres per second, we mean that if the velocity of

a particle were constant and equal to that of the falling

body at the given instant, it would describe 980 centi-

metres in a second.

It is specially important to understand what is meant

by the velocity or rate of motion of a body, because the

ideas which are suggested to our minds by considering
the motion of a particle are those which Newton made
use of in his method of Fluxions 1

, and they lie at the

foundation of the great extension of exact science which
has taken place in modern times.

28. DIAGRAM OF VELOCITIES

If the velocity of each of the bodies in the system is

constant, and if we compare the configurations of the

system at an interval of a unit of time, then the displace-

ments, being those produced in unit of time in bodies

moving with constant velocities, will represent those

velocities according to the method of measurement
described in Article 26.

If the velocities do not actually continue constant

for a unit of time, then we must imagine another system
consisting of the same number of bodies, and in which
the velocities are the same as those of the corresponding
bodies of the system at the given instant, but remain
constant for a unit of time. The displacements of this

system represent the velocities of the actual system at

the given instant.

Another mode of obtaining the diagram of velocities

of a system at a given instant is to take a small interval

of time, say the nth part of the unit of time, so that

the middle of this interval corresponds to the given
1 According to the method of Fluxions, when the value of one

quantity depends on that of another, the rate of variation of the
first quantity with respect to the second may be expressed as a

velocity, by imagining the first quantity to represent the displace-
ment of a particle, while the second flows uniformly with the time.
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instant. Take the diagram of displacement corre-

sponding to this interval and magnify all its dimensions
n times. The result will be a diagram of the mean
velocities of the system during the interval. If we now
suppose the number n to increase without limit the

interval will diminish without limit, and the mean
velocities will approximate without limit to the actual

velocities at the given instant. Finally, when n becomes
infinite the diagram will represent accurately the velo-

cities at the given instant.

29. PROPERTIES OF THE DIAGRAM OF VELOCITIES (fig. 5)

The diagram of velocities for a system consisting of

a number of material particles consists of a number
of points, each corresponding to one of the particles.

DIAGRAM OF CONFIGURATION.

DIAGRAM OF VELOCITIES.

Fig. 5-

The velocity of any particle B with respect to any
other, A, is represented in direction and magnitude by
the line ab in the diagram of velocities, drawn from the

point a, corresponding to A, to the point 6, corresponding
to B.
We may in this way find, by means of the diagram,

the relative velocity of any two particles. The diagram
tells us nothing about the absolute velocity of any
point; it expresses exactly what we can know about
the motion and no more. If we choose to imagine that
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oa represents the absolute velocity of A, then the

absolute velocity of any other particle, B, will be repre-

sented by the vector ob, drawn from o as origin to the

point b, which corresponds to B.
But as it is impossible to define the position of a

body except with respect to the position of some point
of reference, so it is impossible to define the velocity
of a body, except with respect to the velocity of the

point of reference. The phrase absolute velocity has

as little meaning as absolute position. It is better,

therefore, not to distinguish any point in the diagram
of velocities as the origin, but to regard the diagram as

expressing the relations of all the velocities without

defining the absolute value of any one of them.

30. MEANING OF THE PHRASE
" AT REST

"

It is true that when we say that a body is at rest we
use a form of words which appears to assert something
about that body considered in itself, and we might
imagine that the velocity of another body, if reckoned

with respect to a body at rest, would be its true and

only absolute velocity. But the phrase "at rest"

means in ordinary language "having no velocity with

respect to that on which the body stands," as, for

instance, the surface of the earth or the deck of a ship.
It cannot be made to mean more than this.

It is therefore unscientific to distinguish between
rest and motion, as between two different states of a

body in itself, since it is impossible to speak of a body
being at rest or in motion except with reference, ex-

pressed or implied, to some other body.

3 1 . ON CHANGE OF VELOCITY

As we have compared the velocities of different

bodies at the same time, so we may compare the

relative velocity of one body with respect to another at

different times.
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If flj, b lt c^ be the diagram of velocities of the system
of bodies A, B, C, in its original state, and if a2 ,

b2 ,
c 2 ,

be the diagram of velocities in the final state of the

system, then if we take

any point o>jis origin
a2*

and draw coa equal
QI *

and parallel to 1a 2 ,
bz

o>j3 equal and parallel b^
to 6^2, coy equal and C2 "

parallel to c^c^ and so

on, we shall form a

diagram of points a,

j3, y, etc., such that

any line aft in this w< P*

diagram represents in 7
direction and magni- Fig. 6.

tude the change of the

velocity of B with respect to A. This diagram may be
called the diagram of Total Accelerations.

32. ON ACCELERATION

The word Acceleration is here used to denote any
change in the velocity, whether that change be an in-

crease, a diminution, or a change of direction. Hence,
instead of distinguishing, as in ordinary language,
between the acceleration, the retardation, and the

deflexion of the motion of a body, we say that the

acceleration may be in the direction of motion, in the

contrary direction, or transverse to that direction.

As the displacement of a system is defined to be the

change of the configuration of the system, so the Total
Acceleration of the system is defined to be the change of

the velocities of the system. The process of constructing
the diagram of total accelerations by a comparison of

the initial and final diagrams of velocities is the same
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as that by which the diagram of displacement was
constructed by a comparison of the initial and final

diagrams of configuration.

33. ON THE RATE OF ACCELERATION

We have hitherto been considering the total accelera-

tion which takes place during a certain interval of

time. If the rate of acceleration is constant, it is

measured by the total acceleration in a unit of time.

If the rate of acceleration is variable, its value at a

given instant is measured by the total acceleration

in unit of time of a point whose acceleration is

constant and equal to that of the particle at the given
instant.

It appears from this definition that the method of

deducing the rate of acceleration from a knowledge of

the total acceleration in any given time is precisely

analogous to that by which the velocity at any instant

is deduced from a knowledge of the displacement in

any given time.

The diagram of total accelerations constructed for an
interval of the nth part of the unit of time, and then

magnified n times, is a diagram of the mean rates of

acceleration during that interval, and by taking the

interval smaller and smaller, we ultimately arrive at

the true rate of acceleration at the middle of that

interval.

As rates of acceleration have to be considered in

physical science much more frequently than total ac-

celerations, the word acceleration has come to be

employed in the sense in which we have hitherto used
the phrase rate of acceleration.

In future, therefore, when we use the word accelera-

tion without qualification, we mean what we have here

described as the rate of acceleration.
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34. DIAGRAM OF ACCELERATIONS

The diagram of accelerations is a system of points,
each of which corresponds to one of the bodies of the

material system, and is such that any line aft in the

diagram represents the rate of acceleration of the body
B with respect to the body A.

It may be well to observe here that in the diagram
of configuration we use the capital letters, A, B, C, etc.,

to indicate the relative position of the bodies of the

system ;
in the diagram of velocities we use the small

letters, a, b, c, etc., to indicate the relative velocities of

these bodies
;
and in the diagram of accelerations we use

the Greek letters, a, j8, y, etc., to indicate their relative

accelerations.

35. ACCELERATION A RELATIVE TERM

Acceleration, like position and velocity, is a relative

term and cannot be interpreted absolutely*.
If every particle of the material universe within the

reach of our means of observation were at a given
instant to have its velocity altered by compounding
therewith a new velocity, the same in magnitude and
direction for every such particle, all the relative motions
of bodies within the system would go on in a perfectly
continuous manner, and neither astronomers nor

physicists, though using their instruments all the

while, would be able to find out that anything had

happenedf .

It is only if the change of motion occurs in a different

manner in the different bodies of the system that any
event capable of being observed takes place.

* A noteworthy case of relativity is Euler's investigation of the
motion of a solid body as specified with reference to its own
succession of instantaneous positions.

f This appears to be a very drastic postulate of relativity:
a universal imposed acceleration can have no effect during its

occurrence only when all applied forces are proportional to mass.
See Appendix I.



CHAPTER III

ON FORCE

36. KINEMATICS AND KINETICS

WE have hitherto been considering the motion of a

system in its purely geometrical aspect. We have
shown how to study and describe the motion of such a

system, however arbitrary, without taking into account

any of the conditions of motion which arise from the

mutual action between the bodies.

The theory of motion treated in this way is called

Kinematics. When the mutual action between bodies

is taken into account, the science of motion is called

Kinetics, and when special attention is paid to force as

the cause of motion, it is called Dynamics.

37. MUTUAL ACTION BETWEEN Two BODIES STRESS

The mutual action between two portions of matter

receives different names according to the aspect under
which it is studied, and this aspect depends on the

extent of the material system which forms the subject
of our attention.

If we take into account the whole phenomenon of the

action between the two portions of matter, we call it

Stress. This stress, according to the mode in which it

acts, may be described as Attraction, Repulsion, Ten-

sion, Pressure, Shearing stress, Torsion, etc.

38. EXTERNAL FORCE

But if, as in Article 2, we confine our attention to

one of the portions of matter, we see, as it were, only
one side of the transaction namely, that which affects

the portion of matter under our consideration and we
call this aspect of the phenomenon, with reference to

its effect, an External Force acting on that portion of
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matter, and with reference to its cause we call it the

Action of the other portion of matter. The opposite

aspect of the stress is called the Reaction on the other

portion of matter.

39. DIFFERENT ASPECTS OF THE SAME PHENOMENON

In commercial affairs the same transaction between
two parties is called Buying when we consider one

party, Selling when we consider the other, and Trade
when we take both parties into consideration.

The accountant who examines the records of the

transaction finds that the two parties have entered it on

opposite sides of their respective ledgers, and in com-

paring the books he must in every case bear in mind in

whose interest each book is made up.
For similar reasons in dynamical investigations we

must always remember which of the two bodies we are

dealing with, so that we may state the forces in the

interest of that body, and not set down any of the forces

on the wrong side of the account.

40. NEWTON'S LAWS OF MOTION

External or "impressed
"
force considered with refer-

ence to its effect* namely, the alteration of the motions
of bodies is completely defined and described in

Newton's three laws of motion.

The first law tells us under what conditions there is

no external force.

The second shows us how to measure the force when
it exists.

The third compares the two aspects of the action

between two bodies, as it affects the one body or the

other..

* As to its nature, a stress, or balanced set of forces, is deter-

mined by the alteration of the permanent configuration of the
bodies concerned, which reveals its existence and forms the basis
of its statical measure; or else by some other property of matter.
Cf. Art. 68.
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41. THE FIRST* LAW OF MOTION

Law I. Every body perseveres in its state of rest or

of moving uniformly in a straight line,- except in so

far as it is made to change that state by external forces .

The experimental argument for the truth of this

law is, that in every case in which we find an alteration

of the state of motion of a body, we can trace this

alteration to some action between that body and another,
that is to say, to an external force. The existence of

this action is indicated by its effect on the other

body when the motion of that body can be observed.

Thus the motion of a cannon ball is retarded, but
this arises from an action between the projectile and
the air which surrounds it, whereby the ball experiences
a force in the direction opposite to its relative motion,
while the air, pushed forward by an equal force, is

itself set in motion, and constitutes what is called the

wind of the cannon ball.

But our conviction of the truth of this law may be

greatly strengthened by considering what is involved in

a denial of it. Given a body in motion. At a given
instant let it be left to itself and not acted on by any
force. What will happen? According to Newton's
law it will persevere in moving uniformly in a straight

line, that is, its velocity will remain constant both in

direction and magnitude.
If the velocity does not remain constant let us

suppose it to vary. The change of velocity, as we saw in

Article 31, must have a definite direction and magni-
tude. By the maxim of Article 19 this variation must
be the same whatever be the time or place of the

experiment. The direction of the change ef motion
must therefore be determined either by the direction of

the motion itself, or by some direction fixed in the

body.
Let us, in the first place, suppose the law to be that

the velocity diminishes at a certain rate, which for the
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sake of the argument we may suppose so slow that by
no experiments on moving bodies could we have
detected the diminution of velocity in hundreds of

years.
The velocity referred to in this hypothetical law can

only be the velocity referred to a point absolutely at

rest. For if it is a relative velocity its direction as

well as its magnitude depends on the velocity of the

point of reference.

If, when referred to a certain point, the body appears
to be moving northward with diminishing velocity, we
have only to refer it to another point moving northward
with a uniform velocity greater than that of the body,
and it will appear to be moving southward with in-

creasing velocity.
Hence the hypothetical law is without meaning, un-

less we admit the possibility of defining absolute rest

and absolute velocity*.
Even if we admit this as a possibility, the hypothetical

law, if found to be true, might be interpreted, not as

a contradiction of Newton's law, but as evidence of

the resisting action of some medium in space.
To take another case. Suppose the law to be that a

body, not acted on by any force, ceases at once to move.
This is not only contradicted by experience, but it leads

to a definition of absolute rest as the state which a body
assumes as soon as it is freed from the action of ex-

ternal forces.

It may thus be shown that the denial of Newton's
law is in contradiction to the only system of consistent

doctrine about space and time which the human mind
has been able to formf.

* An aether might do this. But even in Maxwell's aether an
isolated body losing energy by radiation would suffer no change
of velocity thereby.

f The argument of this section may be made more definite.

It is a result of observation that the more isolated a body is from
the influence of other bodies, the more nearly is its velocity
constant with reference to an assignable frame of reference. A
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42. ON THE EQUILIBRIUM OF FORCES

If a body moves with constant velocity in a straight

line, the external forces, if any, which act on it, balance

each other, or are in equilibrium.
Thus if a carriage in a railway train moves with

constant velocity in a straight line, the external forces

which act on it such as the traction of the carriage in

front of it pulling it forwards, the drag of that behind

it, the friction of the rails, the resistance of the air

acting backwards, the weight of the carriage acting
downwards, and the pressure of the rails acting up-
wards must exactly balance each other.

Bodies at rest with respect to the surface of the earth

are really in motion, and their motion is not constant nor
in a straight line. Hence the forces which act on them
are not exactly balanced. The apparent weight of bodies

is estimated by the upward force required to keep them
at rest relatively to the earth. The apparent weight is

main problem of physical dynamics is to determine with in-

creasing approximation a frame for which this principle holds,
for all systems, with the greatest attainable precision. A frame
of space and time thus determined has been called (after James
Thomson) a frame of inertia. The statements in the text can be
reconstructed with regard to a reference frame which is a frame
of inertia. But given one frame of inertia, any other frame moving
with any uniform translatory velocity with respect to it, is also

a frame of inertia. Thus a first approximation for local purposes
to a frame of inertia is one fixed with reference to the surrounding
landscape; when the range of phenomena is widened, astronomers
have to change to a frame containing the axis of the earth's

diurnal rotation, and involving a definite value for the length of

the sidereal day : this again has to be corrected for the very slow
movement of the earth's axis that is revealed by the Precession
of the Equinoxes: and so on. Such a frame of inertia represents
in practical essentials the Newtonian absolute space and time:
it is the simplest and most natural scheme of mapping an ex-
tension into which dynamical phenomena can be fitted. If we
assume that space is occupied by a uniform static aether through
whose mediation influences are transmitted from one material

body to another, the properties of that medium will afford unique
specification of an absolute space and time having physical
properties as well as relations of extension. See Appendix I.
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therefore rather less than the attraction of the earth,
and makes a smaller angle with the axis of the earth,

so that the combined effect of the supporting force and
the earth's attraction is a force perpendicular to the

earth's axis just sufficient to cause the body to keep
to the circular path which it must describe if resting
on the earth*.

43. DEFINITION OF EQUAL TIMES

The first law of motion, by stating under what cir-

cumstances the velocity of a moving body remains

constant, supplies us with a method of defining equal
intervals of time. Let the material system consist of

two bodies which do not act on one another, and
which are not acted on by any body external to the

system If one of these bodies is in motion with respect
to the other, the relative velocity will, by the first

law of motion, be constant and in a straight line.

Hence intervals of time are equal when the relative

displacements during those intervals are equalf .

This might at first sight appear to be nothing more
than a definition of what we mean by equal intervals of

time, an expression which we have not hitherto defined

at all.

But if we suppose another moving system of two
bodies to exist, each of which is not acted upon by
any body whatever, this second system will give
us an independent method of comparing intervals of

time.

The statement that equal intervals of time are those

during which equal displacements occur in any such
* See end of Appendix I.

t This statement refers to the displacement of one body
measured on a complete frame of reference attached to the other.
It would not be true for two points moving with uniform velocities,
if relative displacement meant merely change of distance between
them. In fact their mutual distance undergoes acceleration at a
rate varying inversely as the cube of that distance : to an observer
not sensible of directions they would seem to repel each other
with a force obeying that law of action.
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system, is therefore equivalent to the assertion that the

comparison of intervals of time leads to the same
result whether we use the first system of two bodies or

the second system as our time-piece.
We thus see the theoretical possibility of comparing

intervals of time however distant, though it is hardly

necessary to remark that the method cannot be put in

practice in the neighbourhood of the earth, or any other

large mass of gravitating matter.

44. THE SECOND LAW OF MOTION

Law II. Change of motion is proportional to the

impressed force, and takes place in the direction in which

the force is impressed.

By motion Newton means what in modern scientific

language is called Momentum, in which the quantity of

matter moved is taken into account as well as the rate

at which it travels.

By impressed force he means what is now called

Impulse, in which the time during which the force acts

is taken into account as well as the intensity of the force.

45. DEFINITION OF EQUAL MASSES AND OF

EQUAL FORCES

An exposition of the law therefore involves a defini-

tion of equal quantities of matter and of equal forces.

We shall assume that it is possible to cause the force

with which one body acts on another to be of the same

intensity on different occasions.

If we admit the permanency ofthe properties of bodies

this can be done. We know that a thread of caoutchouc

when stretched beyond a certain length exerts a tension

which increases the more the thread is elongated. On
account of this property the thread is said to be elastic.

When the same thread is drawn out to the same length
it will, if its properties remain constant, exert the same
tension. Now let one end of the thread be fastened to
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a body, M, not acted on by any other force than the

tension of the thread, and let the other end be held

in the hand and pulled in a constant direction with a

force just sufficient to elongate the thread to a given

length. The force acting on the body will then be of

a given intensity, F. The body will acquire velocity,
and at the end of a unit of time this velocity will have

a certain value, V .

If the same string be fastened to another body, N,
and pulled as in the former case, so that the elongation
is the same as before, the force acting on the body
will be the same, and if the velocity communicated to

N in a unit of time is also the same, namely V, then

we say of the two bodies M and N that they consist

of equal quantities of matter, or, in modern language,

they are equal in mass. In this way, by the use of an
elastic string, we might adjust the masses of a number
of bodies so as to be each equal to a standard unit

of mass, such as a pound avoirdupois, which is the

standard of mass in Britain.

46. MEASUREMENT OF MASS

The scientific value of the dynamical method of com-

paring quantities of matter is best seen by comparing it

with other methods in actual use.

As long as we have to do with bodies of exactly the

same kind, there is no difficulty in understanding how
the quantity of matter is to be measured. If equal

quantities of the substance produce equal effects of any
kind, we may employ these effects as measures of the

quantity of the substance.

For instance, if we are dealing with sulphuric acid of

uniform strength, we may estimate the quantity of a

given portion of it in several different ways. We may
weigh it, we may pour it into a graduated vessel, and
so measure its volume, or we may ascertain how much
of a standard solution of potash it will neutralise.

We might use the same methods to estimate a
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quantity of nitric acid if we were dealing only with
nitric acid; but if we wished to compare a quantity
of nitric acid with a quantity of sulphuric acid we
should obtain different results by weighing, by mea-

suring, and by testing with an alkaline solution.

Of these three methods, that of weighing depends on
the attraction between the acid and the earth, that of

measuring depends on the volume which the acid

occupies, and that of titration depends on its power of

combining with potash.
In abstract dynamics, however, matter is considered

under no other aspect than as that which can have its

motion changed by the application of force. Hence

any two bodies are of equal mass if equal forces applied
to these bodies produce, in equal times, equal changes
of velocity. This is the only definition of equal masses
which can be admitted in dynamics, and it is applicable
to all material bodies, whatever they may be made of.

It is an observed fact that bodies of equal mass,

placed in the same position relative to the earth, are

attracted equally towards the earth, whatever they are

made of; but this is not a doctrine of abstract dynamics,
founded on axiomatic principles, but a fact discovered

by observation, and verified by the careful experiments
of Newton*, on the times of oscillation of hollow wooden
balls suspended by strings of the same length, and con-

taining gold, silver, lead, glass, sand, common salt,

wood, water, and wheat.

The fact, however, that in the same geographical

position the weights of equal masses are equal, is so

well established, that no other mode of comparing
masses than that of comparing their weights is ever

made use of, either in commerce or in science, except
in researches undertaken for the special purpose of

*
Principia, III. Prop. 6. Actual weight is a compound effect,

in the main attraction, but diminished by reaction against
centripetal acceleration of the mass due to the earth's rotation.

See p. 143.
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determining in absolute measure the weight of unit of

mass at different parts of the earth's surface. The
method employed in these researches is essentially the

same as that of Newton, namely, by measuring the

length of a pendulum which swings seconds.

The unit of mass in this country is defined by the

Act of Parliament (18 & 19 Viet. c. 72, July 30, 1855)
to be a piece of platinum marked "P.S., 1844, i Ib."

deposited in the office of the Exchequer, which "shall

be and be denominated the Imperial Standard Pound

Avoirdupois." One seven-thousandth part of this

pound is a grain.. The French standard of mass is the

"Kilogramme des Archives," made of platinum by
Borda. Professor Miller finds the kilogramme equal to

1 5432-34874 grains.

47. NUMERICAL MEASUREMENT OF FORCE

The unit of force is that force which, acting on the

unit of mass for the unit of time, generates unit of

velocity.
Thus the weight of a gramme that is to say, the

force which causes it to fall may be ascertained by
letting it fall freely. At the end of one second its

velocity will be about 981 centimetres per second if the

experiment be in Britain. Hence the weight of a gramme
is represented by the number 981, if the centimetre,
the gramme, and the second are taken as the funda-

mental units.

It is sometimes convenient to compare forces with
the weight of a body, and to speak of a force of so

many pounds weight or grammes weight. This is

called Gravitation measure. We must remember, how-

ever, that though a pound or a gramme is the same all

over the world, the weight of a pound or a gramme is

greater in high latitudes than near the equator, and
therefore a measurement of force in gravitation measure
is of no scientific value unless it is stated in what part
of the world the measurement was made.

32
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If, as in Britain, the units of length, mass, and time
are one foot, one pound, and one second, the unit of

force is that which, in one second, would communicate
to one pound a velocity of one foot per second. This
unit of force is called a Poundal.

In the French metric system the units are one

centimetre, one gramme, and one second. The force

which in one second would communicate to one gramme
a velocity of one centimetre per second is called a Dyne.

Since the foot is 30-4797 centimetres and the pound
is 453-59 grammes, the poundal is 13825-38 dynes.

48. SIMULTANEOUS ACTION OF FORCES ON A BODY

Now let a unit of force act for unit of time upon unit

of mass. The velocity of the mass will be changed,
and the total acceleration will be unity in the direction

of the force.

The magnitude and direction of this total acceleration

will be the same whether the body is originally at rest

or in motion*. For the expression "at rest" has no
scientific meaning, and the expression

"
in motion," if it

refers to relative motion, may mean anything, and if it

refers to absolute motion can only refer to some medium
fixed in space. To discover the existence of a medium,
and to determine our velocity with respect to it by
observation on the motion of bodies, is a legitimate
scientific inquiry, but supposing all this done we should

have discovered, not an error in the laws of motion,
but a new fact in science.

Hence the effect of a given force on a body does not

depend on the motion of that body.
Neither is it affected by the simultaneous action of

other forces on the body. For the effect of these

forces on the body is only to produce motion in the

body, and this does not affect the acceleration produced

by the first force.

* Cf. Appendix I.
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Hence we arrive at the following form of the law.

When any number of forces act on a body, the accelera-

tion due to eachforce is the same in direction and magnitude
as if the others had not been in action.

When a force, constant in direction and magnitude,
acts on a body, the total acceleration is proportional to

the interval of time during which the force acts.

For if the force produces a certain total acceleration

in a given interval of time, it will produce an equal
total acceleration in the next, because the effect of the

force does not depend upon the velocity which the

body has when the force acts on it. Hence in every

equal interval of time there will be an equal change of

the velocity, and the total change of velocity from the

beginning of the motion will be proportional to the time
of action of the force.

The total acceleration in a given time is proportional
to the force.

For if several equal forces act in the same direction

on the same body in the same direction, each produces
its effect independently of the others. Hence the total

acceleration is proportional to the number of the equal
forces.

49. ON IMPULSE

The total effect of a force in communicating velocity
to a body is therefore proportional to the force and to

the time during which it acts conjointly.
The product of the time of action of a force into its

intensity if it is constant, or its mean intensity if it is

variable, is called the Impulse of the force.

There are certain cases in which a force acts for so

short a time that it is difficult to estimate either its

intensity or the time during which it acts. But it is

comparatively easy to measure the effect of the force

in altering the motion of the body on which it acts,

which, as we have seen, depends on the impulse.
The word impulse was originally used to denote the
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effect of a force of short duration, such as that of a

hammer striking a nail. There is no essential differ-

ence, however, between this case and any other case

of the action of force. We shall therefore use the

word impulse as above defined, without restricting it

to cases in which the action is of an exceptionally
transient character.

50. RELATION BETWEEN FORCE AND MASS

If a force acts on a unit of mass for a certain interval

of time, the impulse, as we have seen, is measured

by the velocity generated.
If a number of equal forces act in the same direction,

each on a unit of mass, the different masses will all

move in the same manner, and may be joined together
into one body without altering the phenomenon. The
velocity of the whole body is equal to that produced by
one of the forces acting on a unit of mass.

Hence the force required to produce a given change
of velocity in a given time is proportional to the

number of units of mass* of which the body consists.

51. ON MOMENTUM
The numerical value of the Momentum of a body is

the product of the number of units of mass in the body
into the number of units of velocity with which it is

moving.
The momentum of any body is thus measured in

terms of the momentum of unit of mass moving with

unit of velocity, which is taken as the unit ofmomentum.
The direction of the momentum is the same as that

of the velocity, and as the velocity can only be estimated

with respect to some point of reference, so the particular
value of the momentum depends on the point of refer-

* Here mass means the measure of the inertia rather than the

quantity of matter; at extremely great speeds they would not
be proportional, but connected by a law involving the speed, so

that momentum or impulse would then be the primary quantity
and inertia a derived one.
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ence which we assume. The momentum of the moon,
for example, will be very different according as we take

the earth or the sun for the point of reference.

52. STATEMENT OF THE SECOND LAW OF MOTION IN

TERMS OF IMPULSE AND MOMENTUM
The change of momentum of a body is numerically equal

to the impulse which produces it, and is in the same
direction.

53. ADDITION OF FORCES

If any number of forces act simultaneously on a

body, each force produces an acceleration proportional
to its own magnitude (Article 48). Hence if in the

diagram of accelerations (Article 34) we draw from

any origin a line representing in direction and magni-
tude the acceleration due to one of the forces, and
from the end of this line another representing the ac-

celeration due to another force, and so on, drawing lines

for each of the forces taken in any order, then the line

drawn from the origin to the extremity of the last of the

lines will represent the acceleration due to the combined
action of all the forces.

Since in this diagram lines which represent the

accelerations are in the same proportion as the forces

to which these accelerations are due, we may consider

the lines as representing these forces themselves.

The diagram, thus understood, may be called a Diagram
of Forces, and the line from the origin to the extremity
of the series represents the Resultant Force.

An important case is that in which the set of lines

representing the forces terminate at the origin so as to

form a closed figure. In this case there is no resultant

force, and no acceleration. The effects of the forces are

exactly balanced, and the case is one of equilibrium.
The discussion of cases of equilibrium forms the subject
of the science of Statics.

It is manifest that since the system of forces is
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exactly balanced, and is equivalent to no force at all*,

the forces will also be balanced if they act in the same

way on any other material systemf, whatever be the

mass of that system. This is the reason why the con-
sideration of mass does not enter into statical investi-

gations.

54. THE THIRD LAW OF MOTION
Law III. Reaction is always equal and opposite to

action, that is to say, the actions of two bodies upon each

other are always equal and in opposite directions.

When the bodies between which the action takes

place are not acted on by any other force, the changes
in their respective momenta produced by the action are

equal and in opposite directions.

The changes in the velocities of the two bodies are

also in opposite directions, but not equal, except in the

case of equal masses. In other cases the changes of

velocity are in the inverse ratio of the masses.

55. ACTION AND REACTION ARE THE PARTIAL

ASPECTS OF A STRESS

We have already (Article 37) used the word Stress

to denote the mutual action between two portions of

matter. This word was borrowed from common
language, and invested with a precise scientific meaning
by the late Professor Rankine, to whom we are indebted
for several other valuable scientific terms.

As soon as we have formed for ourselves the idea of

a stress, such as the Tension of a rope or the Pressure

between two bodies, and have recognised its double

aspect as it affects the two portions of matter between
* Except however as regards the strains which the system of

forces sets up in a deformable body, in cases when they do not
all act at the same point. It is when these strains are not regarded,
or the body on which they act is considered as perfectly rigid, that
we can speak of the statical equivalence of two systems of forces.

f If the forces do not act at the same point, the system must
be a rigid one, else it will be deformed by them.
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which it acts, the third law of motion is seen to be

equivalent to the statement that all force is of the nature

of stress, that stress exists only between two portions
of matter, and that its effects on these portions of

matter (measured by the momentum generated in a

given time) are equal and opposite.
The stress is measured numerically by the force

exerted on either of the two portions of matter. It is

distinguished as a tension when the force acting on
either portion is towards the other, and as a pressure
when the force acting on either portion is away from
the other.

I

When the force is inclined to the surface which

separates the two portions of matter the stress cannot

be distinguished by any term in ordinary language, but

must be defined by technical mathematical terms.

When a tension is exerted between two bodies by the

medium of a string, the stress, properly speaking, is

between any two parts into which the string may be

supposed to be divided by an imaginary section or

transverse interface. If, however, we neglect the weight
of the string, each portion of the string is in equilibrium
under the action of the tensions at its extremities, so

that the tensions at any two transverse interfaces of the

string must be the same. For this reason we often

speak of the tension of the string as a whole, without

specifying any particular section of it, and also the

tension between the two bodies, without considering
the nature of the string through which the tension is

exerted.

56. ATTRACTION AND REPULSION

There are other cases in which two bodies at a dis-

tance appear mutually to act on each other, though we
are not able to detect any intermediate body, like the

string in the former example, through which the action

takes place. For instance, two magnets or two electri-

fied bodies appear to act on each other when placed at
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considerable distances apart, and the motions of the

heavenly bodies are observed to be affected in a manner
which depends on their relative position.

This mutual action between distant bodies is called

attraction when it tends to bring them nearer, and

repulsion when it tends to separate them.
In all cases, however, the action and reaction between

the bodies are equal and opposite.

57. THE THIRD LAW TRUE OF ACTION AT A DISTANCE

The fact that a magnet draws iron towards it was
noticed by the ancients, but no attention was paid to

the force with which the iron attracts the magnet.
Newton, however, by placing the magnet in one vessel

and the iron in another, and floating both vessels in

water so as to touch each other, showed experimentally
that as neither vessel was able to propel the other along
with itself through the water, the attraction of the iron

on the magnet must be equal and opposite to that of

the magnet on the iron, both being equal to the pressure
between the two vessels.

Having given this experimental illustration Newton

goes on to point out the consequence of denying the

truth of this law. For instance, if the attraction of any
part of the earth, say a mountain, upon the remainder
of the earth were greater or less than that of the remain-
der of the earth upon the mountain, there would be a

residual force, acting upon the system of the earth and
the mountain as a whole, which would cause it to move
off, with an ever-increasing velocity, through infinite

space.

58. NEWTON'S PROOF NOT EXPERIMENTAL

This is contrary to the first law of motion, which
asserts that a body does not change its state of motion
unless acted on by external force. It cannot be affirmed

to be contrary to experience, for the effect of an in-

equality between the attraction of the earth on the
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mountain and the mountain on the earth would be the

same as that of a force equal to the difference of these

attractions acting in the direction of the line joining the

centre of the earth with the mountain.
If the mountain were at the equator the earth would

be made to rotate about an axis parallel to the axis

about which it would otherwise rotate, but not passing

exactly through the centre of the earth's mass*.
If the mountain were at one of the poles, the con-

stant force parallel to the earth's axis would cause the

orbit of the earth about the sun to be slightly shifted

to the north or south of a plane passing through the

centre of the sun's mass.

If the mountain were at any other part of the earth's

surface its effect would be partly of the one kind and

partly of the other.

Neither of these effects, unless they were very large,
could be detected by direct astronomical observations,
and the indirect method of detecting small forces, by
their effect in slowly altering the elements of a planet's

orbit, presupposes that the law of gravitation is known
to be true. To prove the laws of motion by the law of

gravitation would be an inversion of scientific order.

We might as well prove the law of addition of numbers

by the differential calculus.

We cannot, therefore, regard Newton's statement as

an appeal to experience and observation, but rather as

a deduction of the third law of motion from the first.

* This is because such a residual force would revolve along with
the earth's diurnal motion. If F is this force, E the earth's mass
and u its angular velocity, the altered axis of rotation would be
at a distance R from the centre of mass such that F Eu2R.

In the next sentence the direction of the residual force is con-
stant ; and the earth being held in an orbit around the sun by the

gravitational attraction, that force is transferred to the solar

system as a whole, to which accordingly, and not to the earth

alone, the final statement in Art. 57 would apply.



CHAPTER IV

ON THE PROPERTIES OF THE CENTRE OF
MASS OF A MATERIAL SYSTEM

59. DEFINITION OF A MASS-VECTOR

WE have seen that a vector represents the operation
of carrying a tracing point from a given origin to a given

point.
Let us define a mass-vector as the operation of carry-

ing a given mass from the origin to the given point.
The direction of the mass-vector is the same as that of

the vector of the mass, but its magnitude is the product
of the mass into the vector of the mass.

Thus if OA is the vector of the mass A, the mass-

vector is OA .A.

60. CENTRE OF MASS OF Two PARTICLES

If A and B are two masses, and if a point C be taken

in the straight line AB, so that BC is to CA as A to B,
then the mass-vector of a mass A + B placed at C is

equal to the sum of the mass-vectors of A and B.

(OC + CB)B

Now the mass-vectors CA . A and

CB . B are equal and opposite, and
so destroy each other, so that

or, C is a point such that if the

masses of A and B were concen-

Fig. 7. trated at C, their mass-vector from

any origin O would be the same as

when A and B are in their actual positions. The point
C is called the Centre of Mass of A and B.



CH. iv] MOMENTUM 45

61. CENTRE OF MASS OF A SYSTEM

If the system consists of any number of particles, we
may begin by finding the centre of mass of any two

particles, and substituting for the two particles a particle

equal to their sum placed at their centre of mass. We
may then find the centre of mass of this particle, to-

gether with the third particle of the system, and place
the sum of the three particles at this point, and so on
till we have found the centre of mass of the whole

system.
The mass-vector drawn from any origin to a mass

equal to that of the whole system placed at the centre

of mass of the system is equal to the sum of the mass-
vectors drawn from the same origin to all the particles
of the system.

It follows, from the proof in Article 60, that the

point found by the construction here given satisfies this

condition. It is plain from the condition itself that

only one point can satisfy it. Hence the construction

must lead to the same result, as to the position of the

centre of mass, in whatever order we take the particles
of the system.
The centre of mass is therefore a definite point in

the diagram of the configuration of the system. By
assigning to the different points in the diagrams of

displacement, velocity, total acceleration, and rate of

acceleration, the masses of the bodies to which they

correspond, we may find in each of these diagrams a

point which corresponds to the centre of mass, and
indicates the displacement, velocity, total acceleration,
or rate of acceleration of the centre of mass.

62. MOMENTUM REPRESENTED AS THE RATE OF

CHANGE OF A MASS-VECTOR

In the diagram of velocities, if the points o, a, b, c,

correspond to the velocities of the origin O and the

bodies A, B, C, and if p be the centre of mass of A
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and B placed at a and b respectively, and if q is the

centre of mass of A + B placed at p and C at c, then

^ q will be the centre of mass of

.fr
the system of bodies A, B, C, at

a, b, c, respectively.
The velocity of A with respect

to O is indicated by the vector oa,

and that of B and C by ob and oc.

op is the velocity of the centre of

mass of A and 5, and oq that of

the centre of mass of A, B, and C, with respect to O.
The momentum ofA with respect to O is the product

of the velocity into the mass, or oa . A, or what we have

already called the mass-vector, drawn from o to the

mass A at a. Similarly the momentum of any other

body is the mass-vector drawn from o to the point on
the diagram of velocities corresponding to that body, and
the momentum of the mass of the system concentrated
at the centre of mass is the mass-vector drawn from o

to the whole mass at q.

Since, therefore, a mass-vector in the diagram of

velocities is what we have already defined as a momen-
tum, we may state the property proved in Article 61

in terms of momenta, thus : The momentum of a mass

equal to that of the whole system, moving with the

velocity of the centre of mass of the system, is equal in

magnitude and parallel in direction to the sum of the

momenta of all the particles of the system.

63. EFFECT OF EXTERNAL FORCES ON THE MOTION
OF THE CENTRE OF MASS

In the same way in the diagram of Total Acceleration

the vectors o>a, co/J, etc., drawn from the origin, represent
the change of velocity of the bodies A, B, etc., during
a

certain_intervaj_of time. The corresponding mass-

vectors, u>a.A,a>fi.B, etc., represent the correspond-
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ing changes of momentum, or, by the second law of

motion, the impulses of the forces acting on these

bodies during that interval of

time. If K is the centre of mass a
^ ]3

of the system, IDK is the change
of velocity during the interval,

and OJK (A + B + C) is the

momentum generated in the &>.

mass concentrated at the centre pig 9
of gravity. Hence, by Article

61, the change of momentum of the imaginary mass

equal to that of the whole system concentrated at the

centre of mass is equal to the sum of the changes of

momentum of all the different bodies of the system.
In virtue of the second law of motion we may put

this result in the following form:
The effect of the forces acting on the different bodies

of the system in altering the motion of the centre of

mass of the system is the same as if all these forces

had been applied to a mass equal to the whole mass of

the system, and coinciding with its centre of mass.

64. THE MOTION OF THE CENTRE OF MASS OF A

SYSTEM is NOT AFFECTED BY THE MUTUAL
ACTION OF THE PARTS OF THE SYSTEM

For if there is an action between two parts of the

system, say A and B, the action of A on B is always,

by the third law of motion, equal and opposite to the

reaction of B on A. The momentum generated in B
by the action of A during any interval is therefore

equal and opposite to that generated in A by the

reaction of B during the same interval, and the motion
of the centre of mass of A and B is therefore not
affected by their mutual action.

We may apply the result of the last article to this

case and say, that since the forces on A and on B arising
from their mutual action are equal and opposite, and
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since the effect of these forces on the motion of the
centre of mass of the system is the same as if they had
been applied to a particle whose mass is equal to the

whole mass of the system, and since the effect of two
forces equal and opposite to each other is zero, the
motion of the centre of mass will not be affected.

65. FIRST AND SECOND LAWS OF MOTION
This is a very important result. It enables us to

render more precise the enunciation of the first and
second laws of motion, by defining that by the velocity
of a body is meant the velocity of its centre of mass. The
body may be rotating, or it may consist of parts, and be

capable of changes of configuration, so that the motions
of different parts may be different, but we can still

assert the laws of motion in the following form :

Law I. The centre of mass of the system perseveres
in its state of rest, or of uniform motion in a straight
line, except in so far as it is made to change that state

by forces acting on the system from without.

Law II. The change of momentum* of the system
during any interval of time is measured by the sum of

the impulses of the external forces during that interval.

66. METHOD OF TREATING SYSTEMS OF MOLECULES

When the system is made up of parts which are so

small that we cannot observe them, and whose motions
are so rapid and so variable that even if we could

observe them we could not describe them, we are

still able to deal with the motion of the centre of mass
of the system, because the internal forces which cause

the variation of the motion of the parts do not affect

the motion of the centre of mass.

*
Meaning in the present connexion momentum of translatory

motion or linear momentum, as distinguished from the angular
momentum of rotatory motion. Cf. Art. 69. The law holds in an
extended sense for both together. Cf. Art. 70.
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67. BY THE INTRODUCTION OF THE IDEA OF MASS WE
PASS FROM POINT-VECTORS, POINT DISPLACEMENTS,
VELOCITIES, TOTAL ACCELERATIONS, AND RATES OF

ACCELERATION, TO MASS-VECTORS, MASS DISPLACE-

MENTS, MOMENTA, IMPULSES, AND MOVING FORCES.

In the diagram -of rates_of acceleration (Fig. 9,

Article 63) the vectors coa, aj/3, etc., drawn from the

origin, represent the rates of acceleration of the bodies

A, B, etc., at a given instant, with respect to that of

the origin O.
The corresponding mass-vectors, cua . A, a>jS . B, etc.,

represent the forces acting on the bodies A, B, etc.

We sometimes speak of several forces acting on a body,
when the force acting on the body arises from several

different causes, so that we naturally consider the parts
of the force arising from these different causes separately.

But when we consider force, not with respect to its

causes, but with respect to its effect that of altering
the motion of a body we speak not of the forces, but

of the force acting on the body, and this force is

measured by the rate of change of the momentum of

the body, and is indicated by the mass-vector in the

diagram of rates of acceleration*.
* This distinction is conveniently expressed by the terms

applied forces and effective forces. For a single particle these two
sets are statically equivalent. Therefore for any body which can
be regarded as a system of particles held together by mutual
influences, the same must be true in the aggregate, when their

mutual forces are also included among the applied forces. But these
internal mutual forces must in any case immediately become
adjusted so as to be statically equilibrated by themselves, other-
wise the parts of the body would be set by them into continually
accelerated motion even when it is removed from all external
influences. Therefore, leaving them out of account, the forces

applied from without are statically equivalent, as regards the

given type of body, to the effective forces that accelerate the

particles or elements of mass of that body. This is the Principle
of d'Alembert: though it is implied in the Newtonian scheme,
being provided for by the Third Law, its more explicit recognition
in 1743 gave rise to great simplification in the treatment of
abstruse dynamical problems, as exemplified in d'Alembert's
discussion of the spin of the earth's axis which causes the pre-
cession of the equinoxes, by reducing them to problems of statics.

M. 4
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We have thus a series of different kinds of mass-
vectors corresponding to the series of vectors which we
have already discussed.

We have, in the first place, a system of mass-vectors
with a common origin, which we may regard as a

method of indicating the distribution of mass in a

material system, just as the corresponding system of

vectors indicates the geometrical configuration of the

system.
In the next place, by comparing the distribution of

mass at two different epochs, we obtain a system of

mass-vectors of displacement.
The rate of mass displacement is momentum, just as

the rate of displacement is velocity.
The change of momentum is impulse, as the change

of velocity is total acceleration.

The rate of change of momentum is moving force, as

the rate of change of velocity is rate of acceleration.

68. DEFINITION OF A MASS-AREA

When a material particle moves from one point to

another, twice the area swept out by the vector of the

particle multiplied by the mass of the particle is callecl

the mass-area of the displacement of the particle with

respect to the origin from which the vector is drawn.
If the area is in one plane, the direction of the mass-

area is normal to the plane, drawn so that, looking in

the positive direction along the normal, the motion of

the particle round its area appears to be the direction

of the motion of the hands of a watch*.
If the area is not in one plane, the path of the

particle must be divided into portions so small that

each coincides sensibly with a straight line, and the

mass-areas corresponding to these portions must be
added together by the rule for the addition of vectors.

* Stated in absolute terms, the motion round the area is in

the direction of a right-handed screw motion which progresses
along the normal in the positive direction.
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69. ANGULAR MOMENTUM
The rate of change of a mass-area is twice the mass

of the particle into the triangle, whose vertex is the

origin and whose base is the velocity of the particle
measured along the line through the particle in the

direction of its motion. The direction of this mass-
area is indicated by the normal drawn according to the
rule given above.

The rate of change of the mass-area of a particle is

called the Angular Momentum of the particle about the

origin, and the sum of the angular momenta of all the

particles is called the angular momentum of the system
about the origin.

The angular momentum of a material system with

respect to a point is, therefore, a quantity having a

definite direction as well as a definite magnitude.
The definition of the angular momentum of a particle

about a point may be expressed somewhat differently
as the product of the momentum of the particle with

respect to that point into the perpendicular from that

point on the line of motion of the particle at that

instant.

70. MOMENT OF A FORCE ABOUT A POINT

The rate of increase of the angular momentum of

a particle is the continued product of the rate of
acceleration of the velocity of the particle into the
mass of the particle into the perpendicular from the

origin on the line through the particle along which
the acceleration takes place. In other words, it is the

product of the moving force acting on the particle into

the perpendicular from the origin on the line of action

of this force.

Now the product of a force into the perpendicular
from the origin on its line of action is called the
Moment of the force about the origin. The axis of the

moment, which indicates its direction, is a vector
drawn perpendicular to the plane passing through the

42
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force and the origin, and in such a direction that,

looking along this line in the direction in which it is

drawn, the force tends to move the particle round the

origin in the direction of the hands of a watch.

Hence the rate of change of the angular momentum
of a particle about the origin is measured by the

moment of the force which acts on the particle about
that point.
The rate of change of the angular momentum of a

material system about the origin is in like manner
measured by the geometric sum of the moments
of the forces which act on the particles of the system.

71. CONSERVATION OF ANGULAR MOMENTUM
Now consider any two particles of the system. The

forces acting on these two particles, arising from their

mutual action, are equal, opposite, and in the same

straight line. Hence the moments of these forces about

any point as origin are equal, opposite, and about the

same axis. The sum of these moments is therefore zero.

In like manner the mutual action between every
other pair of particles in the system consists of two

forces, the sum of whose moments is zero.

Hence the mutual action between the bodies of a

material system does not affect the geometric sum of

the moments of the forces. The only forces, therefore,
which need be considered in finding the geometric sum
of the moments are those which are external to the

system that is to say, between the whole or any
part of the system and bodies not included in the

system.
The rate of change of the angular momentum of the

system is therefore measured by the geometric sum of

the moments of the external forces acting on the

system.
If the directions of all the external forces pass through

the origin, their moments are zero, and the angular
momentum of the system will remain constant.
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When a planet describes an orbit about the sun,
the direction of the mutual action between the two
bodies always passes through their common centre of

mass. Hence the angular momentum of either body
about their common centre of mass remains constant,
so far as these two bodies only are concerned, though
it may be affected by the action of other planets. If,

however, we include all the planets in the system, the

geometric sum of their angular momenta about their

common centre of mass will remain absolutely con-

stant*, whatever may be their mutual actions, provided
no force arising from bodies external to the whole solar

system acts in an unequal manner upon the different

members of the system.

* That is, the plane of the total angular momentum of the
solar system is invariable in direction in space.
The plane of this resultant angular momentum, called by

Laplace the "invariable plane," is fundamental for the exact

specification of the motion of the solar system.



CHAPTER V

ON WORK AND ENERGY

72. DEFINITIONS

WORK is the act of* producing a change of configuration
in a system in opposition to a force which resists that

change.
ENERGY is the capacity of doing work.

When the nature of a material system is such that

if, after the system has undergone any series of changes
it is brought back in any manner to its original state,

the whole work done by external agents on the system
is equal to the whole work done by the system in over-

coming external forces, the system is called a CON-
SERVATIVE SYSTEMf .

73. PRINCIPLE OF CONSERVATION OF ENERGY

The progress of physical science has led to the dis-

covery and investigation of different forms of energy,
and to the establishment of the doctrine that all

material systems may be regarded as conservative

systems, provided that all the different forms of energy
which exist in these systems are taken into account.

This doctrine, considered as a deduction from ob-

servation and experiment, can, of course, assert no
more than that no instance of a non-conservative

system has hitherto been discovered.

As a scientific or science-producing doctrine, how-
* The work done is a quantitative measure of the effort ex-

pended in deranging the system, in terms of the consumption of

energy that is required to give effect to it.

The idea of work implies a fund of energy, from which the work
is supplied.

f As distinguished from a system in which the energy available

for work becomes gradually degraded to less available forms by
frictional agencies, called a Dissipative System. Cf. Art. 93.
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ever, it is always acquiring additional credibility from
the constantly increasing number of deductions which
have been drawn from it, and which are found in all

cases to be verified by experiment.
In fact the doctrine of the Conservation of Energy is

the one generalised statement which is found to be
consistent with fact, not in one physical science only,
but in all.

When once apprehended it furnishes to the physical

inquirer a principle on which he may hang every known
law relating to physical actions, and by which he may
be put in the way to discover the relations of such
actions in new branches of science*.

For such reasons the doctrine is commonly called the

Principle of the Conservation of Energy.

74. GENERAL STATEMENT OF THE PRINCIPLE OF

THE CONSERVATION OF ENERGY

The total energy of any material system is a quantity
which can neither be increased nor diminished by any
action between the -parts of the system, though it may be

transformed into any of the forms of which energy is

susceptible.

If, by the action of some agent external to the

system, the configuration of the system is changed,
while the forces of the system resist this change of

configuration, the external agent is said to do work on
the system. In this case the energy of the system is

increased by the amount of work done on it by the

external agent.

If, on the contrary, the forces of the system produce
a change of configuration which is resisted by the

external agent, the system is said to do work on the

* Every law relating to the forces of statical or steady systems
is involved implicitly in the complete expression for the Energy
of the system. But in a kinetic system, where force is being used
in producing energy of motion, a more elaborate principle is re-

quired, that of Least Action, for example. See infra, Chapter ix.
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external agent, and the energy of the system is dimin-
ished by the amount of work which it does.

Work, therefore, is a transference of energy from
one system to another; the system which gives out

energy is said to do work on the system which receives

it, and the amount of energy given out by the first

system is always exactly equal to that received by the

second.

If, therefore, we include both systems in one larger

system, the energy of the total system is neither

increased nor diminished by the action of the one

partial system on the other.

75. MEASUREMENT OF WORK
Work done by an external agent on a material system

may be described as a change* in the configuration of

the system taking place under the action of an external

force tending to produce that change.
Thus, if one pound is lifted one foot from the ground

by a man in opposition to the force of gravity, a certain

amount of work is done by the man, and this quantity
is known among engineers as one foot-pound.
Here the man is the external agent, the material

system consists of the earth and the pound, the change of

configuration is the increase of the distance between
the matter of the earth and the matter of the pound,
and the force is the upward force exerted by the man in

lifting the pound, which is equal and opposite to the

weight of the pound. To raise the pound a foot higher
would, if gravity were a uniform force, require exactly
the same amount of work. It is true that gravity is not

really uniform, but diminishes as we ascend from the

earth's surface, so that a foot-pound is not an accurately

* See footnote, Art. 72.
These ideas, leading to an estimate of the total effect by work

done rather than momentum
, produced, are of the kind that

were enforced by Leibniz. What was then mainly needed to avoid
confusion was a set of names for the different effects.
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known quantity, unless we specify the intensity of

gravity at the place. But for the purpose of illustration

we may assume that gravity is uniform for a few feet of

ascent, and in that case the work done in lifting a pound
would be one foot-pound for every foot the pound is

lifted.

To raise twenty pounds of water ten feet high
requires 200 foot-pounds of work. To raise one pound
ten feet high requires ten foot-pounds, and as there are

twenty pounds the whole work is twenty times as

much, or two hundred foot-pounds.
The quantity of work done is, therefore, proportional

to the product of the numbers representing the force

exerted and the displacement in the direction of the

force.

In the case of a foot-pound the force is the weight of

a pound a quantity which, as we know, is different in

different places. The weight of a pound expressed in

absolute measure is numerically equal to the intensity
of gravity, 'the quantity denoted by g, the value of

which in poundals to the pound varies from 32-227 at

the poles to 32-117 at the equator, and diminishes

without limit as we recede from the earth. In dynes
to the gramme it varies from 978-1 to 983-1. Hence,
in order to express work in a uniform and consistent

manner, we must multiply the number of foot-pounds

by the number representing the intensity of gravity at

the place. The work is thus reduced to foot-poundals.
We shall always understand work to be measured in

this manner and reckoned in foot-poundals when no
other system of measurement is mentioned. When
work is expressed in foot-pounds the system is that of

gravitation-measures y
which is not a complete system

unless we also know the intensity of gravity at the

place.
In the metrical system the unit of work is the Erg,

which is the work done by a dyne acting through a

centimetre. There are 421393-8 ergs in a foot-poundal.
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76. POTENTIAL ENERGY

The work done by a man in raising a heavy body is

done in overcoming the attraction between the earth

and that body. The energy of the material system,

consisting of the earth and the heavy body, is thereby
increased. If the heavy body is the leaden weight of a

clock, the energy of the clock is increased by winding
it up, so that the clock is able to go for a week in spite
of the friction of the wheels and the resistance of the

air to the motion of the pendulum, and also to give out

energy in other forms, such as the communication of

the vibrations to the air, by which we hear the ticking
of the clock.

When a man winds up a watch he does work in

changing the form of the mainspring by coiling it up.
The energy of the mainspring is thereby increased, so

that as it uncoils itself it is able to keep the watch

going.
In both these cases the energy communicated to the

system depends upon a change of configuration.

77. KINETIC ENERGY

But in a very important class of phenomena the work
is done in changing the velocity of the body on which it

acts. Let us take as a simple case that of a body
moving without rotation under the action of a force.

Let the mass of the body be M pounds, and let a force

of F poundals act on it in the line of motion during an

interval of time, T seconds. Let the velocity at the

beginning of the interval be V and that at the end V
feet per second, and let the distance travelled by the

body during the time be S feet. The original momen-
tum is MV, and the final momentum is MV

',
so that

the increase of momentum is M (V F), and this, by
the second law of motion, is equal to FT, the impulse
of the force F acting for the time T. Hence

FT=M(V -
V] (i).
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Since the velocity increases uniformly with the time

[when the force is constant], the mean velocity is the

arithmetical mean of the original and final velocities,

or^(V+ V).
We can also determine the mean velocity by dividing

the space S by the time T, during which it is described.

Hence

T=l(V+V) (2).

Multiplying the corresponding members of equations

(i) and (2) each by each we obtain

FS= IMV'i-lMV2
(3).

Here FS is the work done by the force F acting on the

body while it moves through the space S in the direction

of the force, and this is equal to the excess of %MV' 2

above %MVZ
. If we call \MV2

,
or half the product of

the mass into the square of the velocity, the kinetic

energy of the body at first, then \MV 2 will be the

kinetic energy after the action of the force F through
the space S. The energy is here expressed in foot-

poundals.
We may now express the equation in words by

saying that the work done by the force F in changing
the motion of the body is measured by the increase of

the kinetic energy of the body during the time that the

force acts.

We have proved that this is true, when the interval of

time is so small that we may consider the force as

constant during that time, and the mean velocity during
the interval as the arithmetical mean of the velocities at

the beginning and end of the interval. This assumption,
which is exactly true when the force is constant, how-
ever long the interval may be, becomes in every case

more and more nearly true as the interval of time taken

becomes smaller and smaller. By dividing the whole
time of action into small parts, and proving that in

each of these the work done is equal to the increase of
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the kinetic energy of the body, we may, by adding the

successive portions of the work and the successive

increments of energy, arrive at the result that the total

work done by the force is equal to the total increase of

kinetic energy.
If the force acts on the body in the direction opposite

to its motion, the kinetic energy of the body will be

diminished instead of being increased, and the force,

instead of doing work on the body, will act as a resist-

ance, which the body, in its motion, overcomes. Hence
a moving body, as long as it is in motion, can do work in

overcoming resistance, and the work done by the moving
body is equal to the diminution of its kinetic energy,
till at last, when the body is brought to rest, its kinetic

energy is exhausted, and the whole work it has done
is then equal to the whole kinetic energy which it had
at first.

We now see the appropriateness of the name kinetic

energy, which we have hitherto used merely as a name
to denote the product |MF2

. For the energy of a body
has been defined as the capacity which it has of doing
work, and it is measured by the work which it can do.

The kinetic energy of a body is the energy it has in

virtue of being in motion, and we have now shown that

its value is expressed by \MVZ or \MV x V, that is,

half the product of its momentum into its velocity.

78. OBLIQUE FORCES

If the force acts on the body at right angles to the

direction of its motion it does no work on the body, and

it alters the direction but not the magnitude of the

velocity. The kinetic energy, therefore, which depends
on the square of the velocity, remains unchanged.

If the direction of the force is neither coincident with,

nor at right angles to, that of the motion of the body we

may resolve the force into two components, one of which

is at right angles to the direction of motion, while the
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other is in the direction of motion (or in the opposite

direction).
The first of these components may be left out of

consideration in all calculations about energy, since it

neither does work on the body nor alters its kinetic

energy.
The second component is that which we have already

considered. When it is in the direction of motion it

increases the kinetic energy of the body by the amount
of work which it does on the body. When it is in the

opposite direction the kinetic energy of the body is

diminished by the amount of work which the body does

against the force.

Hence in all cases the increase of kinetic energy is

equal to the work done on the body by external agency,
and the diminution of kinetic energy is equal to the

work done by the body against external resistance.

79. KINETIC ENERGY OF Two PARTICLES REFERRED

TO THEIR CENTRE OF MASS

The kinetic energy of a material system is equal to

the kinetic energy of a mass equal to that of the system
moving with the velocity of the centre of mass of the

system, together with the kinetic energy due to the

motion of the parts of the system ,

relative to its centre of mass.
Let us begin with the case of

two particles whose masses are A
and B, and whose velocities are

represented in the diagram of

velocities by the lines oa and ob.

If c is the centre of mass of a Fig. 10.

particle equal to A placed at a,

and a particle equal to B placed at 6, then oc will

represent the velocity of the centre of mass of the two

particles.
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The kinetic energy of the system is the sum of the

kinetic energies of the particles, or

T = lAoa
2- + %Bob

2
.

Expressing oa 2 and ob 2 in terms of oc, ca and cb, and
the angle oca = 9,

T = Aoc 2 + lAca? - Aoc.ca cos

+ %Boc
2 + IBcb

2 - Boc.cb cos d.

But since c is the centre of mass of A at a, and B at b,

Aca + Bcb = o.

Hence adding
T = i

(A + B) oc2 + iAca 2 + Bcb 2
,

or, the kinetic energy of the system of two particles A
and B is equal to that of a mass equal to (A + B)
moving with the velocity of the centre of mass, together
with that of the motion of the particles relative to the

centre of mass.

80. KINETIC ENERGY OF A MATERIAL SYSTEM
REFERRED TO ITS CENTRE OF MASS

We have begun with the case of two particles, because

the motion of a particle is assumed to be that of its

centre of mass, and we have proved our proposition
true for a system of two particles. But if the proposi-
tion is true for each of two material systems taken

separately, it must be true of the system which they
form together. For if we now suppose oa and ob to

represent the velocities of the centres of mass of two
material systems A and B, then oc will represent the

velocity of the centre of mass of the combined system
A + B, and if TA represents the kinetic energy of the

motion of the system A relative to its own centre of

mass, and TB the same for the system B, then if the

proposition is true for the systems A and B taken

separately, the kinetic energy of A is

Aoa 2 + TA ,

and that of B Bob2 + TB .
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The kinetic energy of the whole is therefore

TB

The first term represents the kinetic energy of a mass

equal to that of the whole system moving with the

velocity of the centre of mass of the whole system.
The second and third terms, taken together, represent

the kinetic energy of the system A relative to the centre

of gravity of the whole system, and the fourth and
fifth terms represent the same for the system B.
Hence if the proposition is true for the two systems

A and B taken separately, it is true for the system
compounded of A and B. But we have proved it true

for the case of two particles; it is therefore true for

three, four, or any other number of particles, and there-

fore for any material system.
The kinetic energy of a system referred to its centre

of mass is less than its kinetic energy when referred to

any other point.
For the latter quantity exceeds the former by a

quantity equal to the kinetic energy of a mass equal to

that of the whole system moving with the velocity of

the centre of mass relative to the other point, and since

all kinetic energy is essentially positive, this excess must
be positive.

81. AVAILABLE KINETIC ENERGY

We have already seen in Article 64 that the mutual
action between the parts of a material system cannot

change the velocity of the centre of mass of the system.
Hence that part of the kinetic energy of the system
which depends on the motion of the centre of mass
cannot be affected by any action internal to the system.
It is therefore impossible, by means of the mutual
action of the parts of the system, to convert this part
of the energy into work. As far as the system itself

is concerned, this energy is unavailable. It can be
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converted into work only by means of the action

between this system and some other material system
external to it.

Hence if we consider a material system unconnected
with any other system, its available kinetic energy is

that which is due to the motions of the parts of the

system relative to its centre of mass.

Let us suppose that the action between the parts of

the system is such that after a certain time the con-

figuration of the system becomes invariable, and let us
call this process the solidification of the system. We
have shown that the angular momentum of the whole

system is not changed by any mutual action of its parts.
Hence if the original angular momentum is zero, the

system, when its form becomes invariable, will not rotate

about its centre of mass, but if it moves at all will move

parallel to itself, and the parts will be at rest relative

to the centre of mass. In this case therefore the whole
available energy will be converted into work by the

mutual action of the parts during the solidification of

the system.
If the system has angular momentum, it will have

the same angular momentum when solidified. It will

therefore rotate about its centre of mass, and will

therefore still have energy of motion relative to its

centre of mass, and this remaining kinetic energy has

not been converted into work.
But if the parts of the system are allowed to separate

from one another in directions perpendicular to the

axis of the angular momentum of the system, and if the

system when thus expanded is solidified, the remaining
kinetic energy of rotation round the centre of mass
will be less and less the greater the expansion of the

system, so that by sufficiently expanding the system

[before it is solidified] we may make the remaining
kinetic energy as small as we please, so that the whole
kinetic energy relative to the centre of mass of the

system may be converted into work within the system.
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82. POTENTIAL ENERGY

The potential energy of a material system is the

capacity which it has of doing work [on other systems]

depending on other circumstances than the motion
of the system. In other words, potential energy is that

energy which is not kinetic.

In the theoretical material system which we build up
in our imagination from the fundamental ideas of matter

and motion, there are no other conditions present except
the configuration and motion of the different masses of

which the system is composed. Hence in such a system
the circumstances upon which the energy must depend
are motion and configuration only, so that, as the kinetic

energy depends on the motion, the potential energy
must depend on the configuration.

In many real material systems we know that part of

the energy does depend on the configuration. Thus
the mainspring of a watch has more energy when
coiled up than when partially uncoiled, and two bar

magnets have more energy when placed side by side

with their similar poles turned the same way than when
their dissimilar poles are placed next each other.

83. ELASTICITY

In the case of the spring we may trace the connexion
between the coiling of the spring and the force which
it exerts somewhat further by conceiving the spring
divided (in imagination) into very small parts or ele-

ments. When the spring is coiled up, the form of each

of these small parts is altered, and such an alteration of

the form of a solid body is called a Strain.

In solid bodies strain is accompanied with internal

force or stress ; those bodies in which the stress depends
simply on the strain are called Elastic, and the property
of exerting stress when strained is called Elasticity.
We thus find that the coiling of the spring involves

the strain of its elements, and that the external force
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which the spring exerts is the resultant of the stresses

in its elements.

We thus substitute for the immediate relation

between the coiling of the spring and the force which it

exerts, a relation between the strains and stresses of

the elements of the spring ;
that is to say, for a single

displacement and a single force, the relation between
which may in some cases be of an exceedingly compli-
cated nature, we substitute a multitude of strains and
an equal number of stresses, each strain being con-

nected with its corresponding stress by a much more

simple relation.

But when all is done, the nature of the connexion
between configuration and force remains as mysterious
as ever. We can only admit the fact, and if we call

all such phenomena phenomena of elasticity, we may
find it very convenient to classify them in this way,
provided we remember that by the use of the word

elasticity we do not profess to explain the cause of the

connexion between configuration and energy.

84. ACTION AT A DISTANCE

In the case of the two magnets there is no visible

substance connecting the bodies between which the

stress exists. The space between the magnets may be
filled with air or with water, or we may place the magnets
in a vessel and remove the air by an air-pump, till the

magnets are left in what is commonly called a vacuum,
and yet the mutual action of the magnets will not be
altered. We may even place a solid plate of glass or

metal or wood between the magnets, and still we find

that their mutual action depends simply on their

relative position, and is not perceptibly modified by
placing any substance between them, unless that

substance is one of the magnetic metals. Hence the

action between the magnets is commonly spoken of as

action at a distance.
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Attempts have been made, with a certain amount of

success 1
,
to analyse this action at a distance into a

continuous distribution of stress in an invisible medium,
and thus to establish an analogy between the magnetic
action and the action of a spring or a rope in trans-

mitting force; but still the general fact that strains or

changes of configuration are accompanied by stresses or

internal forces, and that thereby energy is stored up
in the system so strained, remains an ultimate fact

which has not yet been explained as the result of any
more fundamental principle.

85. THEORY OF POTENTIAL ENERGY MORE COMPLI-

CATED THAN THAT OF KlNETIC ENERGY

Admitting that the energy of a material system may
depend on its configuration, the mode in which it so

depends may be much more complicated than the mode
in which the kinetic energy depends on the motion of

the system. For the kinetic energy may be calculated

from the motion of the parts of the system by an in-

variable method. We multiply the mass of each part by
half the square of its velocity, and take the sum of all

such products. But the potential energy arising from
the mutual action of two parts of the system may
depend on the relative position of the parts in a manner
which may be different in different instances. Thus
when two billiard balls approach each other from a

distance, there is no sensible action between them till

they come so near one another that certain parts appear
to be in contact. To bring the centres of the two balls

nearer, the parts in contact must be made to yield, and
this requires the expenditure of work.

1 See Clerk Maxwell's Treatise on Electricity and Magnetism,
Vol. II, Art. 641. [Modern scrutiny requires a distribution of
momentum in the medium, which reveals itself for example in
the pressure of radiation, in addition to the stress: cf. appendix to

J. H. Poynting's Collected Papers. It in fact develops into the

guiding tensor principle in the theory of gravitational relativity.]

52
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Hence in this case the potential energy is constant

for all distances greater than the distance of first

contact, and then rapidly increases when the distance

is diminished.

The force between magnets varies with the distance

in a very different manner, and in fact we find that it is

only by experiment that we can ascertain the form of

the relation between the configuration of a system and
its potential energy.

86. APPLICATION OF THE METHOD OF ENERGY TO

THE CALCULATION OF FORCES

A complete knowledge of the mode in which the

energy of a material system varies when the configura-
tion and motion of the system are made to vary is

mathematically equivalent to a knowledge of all the

dynamical properties of the system. The mathematical

methods by which all the forces and stresses in a moving
system are deduced from the single mathematical

formula which expresses the energy as a function of the

variables have been developed by Lagrange, Hamilton,
and other eminent mathematicians, but it would be

difficult even to describe them in terms of the elementary
ideas to which we restrict ourselves in this book. An
outline of these methods is given in my treatise on

Electricity, Part IV, Chapter V, Article 533*, and the

application of these dynamical methods to electro-

magnetic phenomena is given in the chapters im-

mediately following.
But if we consider only the case of a system at rest

it is easy to see how we can ascertain the forces of the

system when we know how its energy depends on its

configuration.
For let us suppose that an agent external to the

system produces a displacement from one configuration
to another, then if in the new configuration the system

*
Reprinted infra, p. 123.
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possesses more energy than it did at first, it can have

received this increase of energy only from the external

agent. This agent must therefore have done an amount
of work equal to the increase of energy. It must
therefore have exerted force in the direction of the

displacement, and the mean value of this force, multi-

plied into the displacement, must be equal to the work
done. Hence the mean value of the force may be found

by dividing the increase of energy by the displacement.
If the displacement is large this force may vary con-

siderably during the displacement, so that it may be
difficult to calculate its mean value

;
but since the force

depends on the configuration, if we make the displace-
ment smaller and smaller the variation of the force will

become smaller and smaller, so that at last the force

may be regarded as sensibly constant during the dis-

placement.
If, therefore, we calculate for a given configuration

the rate at which the energy increases with the dis-

placement, by a method similar to that described in

Articles 27, 28, and 33, this rate will be numerically

equal to the force exerted by the external agent in the

direction of the displacement.
If the energy diminishes instead of increasing as the

displacement increases, the system must do work on
the external agent, and the force exerted by the external

agent must be in the direction opposite to that of dis-

placement.

87. SPECIFICATION OF THE [MODE OF ACTION]
OF FORCES

In treatises on dynamics the forces spoken of are

usually those exerted by the external agent on the

material system. In treatises on electricity, on the

other hand, the forces spoken of are usually those

exerted by the electrified system against an external

agent which prevents the system from moving. It is

necessary, therefore, in reading any statement about
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forces, to ascertain whether the force spoken of is to

be regarded from the one point of view or the other.

We may in general avoid any ambiguity by viewing
the phenomenon as a whole, and speaking of it as a

stress exerted between two points or bodies, and dis-

tinguishing it as a tension or a pressure, an attraction or

a repulsion, according to its direction. See Article 55.

88. APPLICATION TO A SYSTEM IN MOTION

It thus appears that from a knowledge of the potential

energy of a system in every possible configuration
we may deduce all the external forces which are re-

quired to keep the system in [any given] configuration.
If the system is at rest, and if these external forces are

the actual forces, the system will remain in equilibrium.
If the system is in motion the force acting on each

particle is that arising from the connexions of the

system (equal and opposite to the external force just

calculated), together with any external force which may
be applied to it. Hence a complete knowledge of the

mode in which the potential energy varies with the

configuration would enable us to predict every possible
motion of the system under the action of given external

forces, provided we were able to overcome the purely
mathematical difficulties of the calculation.

89. APPLICATION OF THE METHOD OF ENERGY TO

THE INVESTIGATION OF REAL BODIES

When we pass from abstract dynamics to physics
from material systems, whose only properties are those

expressed by their definitions, to real bodies, whose

properties we have to investigate we find that there

are many phenomena which we are not able to explain
as changes in the configuration and motion of a material

system.
Of course if we begin by assuming that the real

bodies are systems composed of matter which agrees
in all respects with the definitions we have laid down,
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we may go on to assert that all phenomena are changes
of configuration and motion, though we are not pre-

pared to define the kind of configuration and motion by
which the particular phenomena are to be explained.
But in accurate science such asserted explanations must
be estimated, not by their promises, but by their per-
formances. The configuration and motion of a system
are facts capable of being described in an accurate

manner, and therefore, in order that the explanation of

a phenomenon by the configuration and motion of a

material system may be admitted as an addition to our

scientific knowledge, the configurations, motions, and
forces must be specified, and shown to be consistent

with known facts, as well as capable of accounting for

the phenomenon.

90. VARIABLES ON WHICH THE ENERGY DEPENDS

But even when the phenomena we are studying
have not yet been explained dynamically, we are still

able to make great use of the principle of the conserva-

tion of energy as a guide to our researches.

To apply this principle, we in the first place assume
that the quantity of energy in a material system depends
on the state of that system, so that for a given state

there is a definite amount of energy.
Hence the first step is to define the different states

of the system, and when we have to deal with real

bodies we must define their state with respect not only
to the configuration and motion of their visible parts,
but if we have reason to suspect that the configuration
and motion of their invisible particles influence the

visible phenomenon, we must devise some method of

estimating the energy thence arising.
Thus pressure, temperature, electric potential, and

chemical composition are variable quantities, the values

of which serve to specify the state of a body, and in

general the energy of the body depends on the values

of these and other variables.
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91. ENERGY IN TERMS OF THE VARIABLES

The next step in our investigation is to determine
how much work must be done by external agency on
the body in order to make it pass from one specified
state to another.

For this purpose it is sufficient to know the work

required to make the body pass from a particular state,

which we may call the standard state, into any other

specified state. The energy in the latter state is equal
to that in the standard state, together with the work

required to bring it from the standard state into the

specified state. The fact that this work is the same

through whatever series of states the system has passed
from the standard state to the specified state is the

foundation of the whole theory of energy.
Since all the phenomena depend on the variations of

the energy of the body, and not on its total value, it is

unnecessary, even if it were possible, to form any
estimate of the energy of the body in its standard state.

92. THEORY OF HEAT

One of the most important applications of the prin-

ciple of the conservation of energy is to the investigation
of the nature of heat.

At one time it was supposed that the difference be-

tween the states of a body when hot and when cold was
due to the presence of a substance called caloric, which
existed in greater abundance in the body when hot than

when cold. But the experiments of Rumford on the

heat produced by the friction of metal, and of Davy on
the melting of ice by friction, have shown that when
work is spent in overcoming friction, the amount of heat

produced is proportional to the work spent.
The experiments of Hirn have also shown that when

heat is made to do work in a steam-engine, part of the

heat disappears, and that the heat which disappears is

proportional to the work done.
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A very careful measurement of the work spent in

friction, and of the heat produced, has been made by
Joule, who finds that the heat required to raise one

pound of water from 39 F. to 40 F. is equivalent to

772 foot-pounds of work at Manchester, or 24,858 foot-

poundals.
From this we may find that the heat required to

raise one gramme of water from 3 C. to 4 C. is

42,000,000 ergs.

93 . HEAT A FORM OF ENERGY

Now, since heat can be produced it cannot be a sub-

stance ;
and since whenever mechanical energy is lost by

friction there is a production of heat, and whenever
there is a gain of mechanical energy in an engine there

is a loss of heat
;
and since the quantity of energy lost

or gained is proportional to the quantity of heat gained
or lost, we conclude that heat is a form of energy.
We have also reasons for believing that the minute

particles of a hot body are in a state of rapid agitation,
that is to say, that each particle is always moving very

swiftly, but that the direction of its motion alters so

often that it makes little or no progress from one region
to another.

If this be the case, a part, and it may be a very large

part, of the energy of a hot body must*be in the form
of kinetic energy.

But for our present purpose it is unnecessary to

ascertain in what form energy exists in a hot body ;
the

most important fact is that energy may be measured in

the form of heat, and since every kind of energy may
be converted into heat, this gives us one of the most
convenient methods of measuring it.

94. ENERGY MEASURED AS HEAT

Thus when certain substances are placed in contact

chemical actions take place, the substances combine in

a new way, and the new group of substances has differ-
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ent chemical properties from the original group of

substances. During this process mechanical work may
be done by the expansion of the mixture, as when
gunpowder is fired

;
an electric current may be produced,

as in the voltaic battery; and heat may be generated,
as in most chemical actions.

The energy given out in the form of mechanical
work may be measured directly, or it may be trans-

formed into heat by friction. The energy spent in

producing the electric current may be estimated as

heat by causing the current to flow through a conductor
of such a form that the heat generated in it can easily
be measured. Care must be taken that no energy is

transmitted to a distance in the form of sound or

radiant heat without being duly accounted for.

The energy remaining in the mixture, together with
the energy which has escaped, must be equal to the

original energy.
Andrews, Favre and Silbermann, [Julius Thomsen,]

and others, have measured the quantity of heat pro-
duced when a certain quantity of oxygen or of chlorine

combines with its equivalent of other substances. These
measurements enable us to calculate the excess of the

energy which the substances concerned had in their

original state, when uncombined, above that which they
have after combination.

95. SCIENTIFIC WORK TO BE DONE

Though a great deal of excellent work of this kind

has already been done, the extent of the field hitherto

investigated appears quite insignificant when we con-

sider the boundless variety and complexity of the

natural bodies with which we have to deal.

In fact the special work which lies before the physical

inquirer in the present state of science is the deter-

mination of the quantity of energy which enters or

leaves a material system during the passage of the sys-
tem from its standard state to any other definite state.
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96. HISTORY OF THE DOCTRINE OF ENERGY

The scientific importance of giving a name to the

quantity which we call kinetic energy seems to have
been first recognised by Leibniz, who gave to the

product of the mass by the square of the velocity the

name of Vis Viva. This is twice the kinetic energy.
Newton, in the " Scholium to the Laws of Motion,"

expresses the relation between the rate at which work
is done by the external agent, and the rate at which
it is given out, stored up, or transformed by any machine
or other material system, in the following statement,
which he makes in order to show the wide extent of the

application of the Third Law of Motion.
"
If the action of the external agent is estimated by

the product of its force into its velocity, and the re-

action of the resistance in the same way by the product
of the velocity of each part of the system into the

resisting force arising from friction, cohesion, weight,
and acceleration, the action and reaction will be equal
to each other, whatever be the nature and motion of the

system." That this statement of Newton's implicitly
contains nearly the whole doctrine of energy was first

pointed out by Thomson and Tait*.

The words Action and Reaction as they occur in the

enunciation of the Third Law of Motion are explained
to mean Forces, that is to say, they are the opposite
aspects of one and the same Stress.

In the passage quoted above a new and different

sense is given to these words by estimating Action and
Reaction by the product of a force into the velocity of

* Treatise on Natural Philosophy, vol. i, 1867, 268.

"Newton, in a Scholium to his Third Law of Motion, has
stated the relation between work and kinetic energy in a manner
so perfect that it cannot be improved, but at the same time with
so little apparent effort or desire to attract attention that no
one seems to have been struck with the great importance of the

passage till it was pointed out recently (1867) by Thomson and
Tait." Clerk Maxwell's Theory of Heat, ch. iv on "Elementary
Dynamical Principles," p. 91.
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its point of application. According to this definition

the Action of the external agent is the rate at which it

does work. This is what is meant by the Power of a

steam-engine or other prime mover. It is generally

expressed by the estimated number of ideal horses

which would be required to do the work at the same
rate as the engine, and this is called the Horse-power
of the engine.
When we wish to express by a single word the rate

at which work is done by an agent we shall call it the

Power of the agent, defining the power as the work
done in the unit of time.

The use of the term Energy, in a precise and scientific

sense, to express the quantity of work which a material

system can do, was introduced by Dr Young*.

97. ON THE DIFFERENT FORMS OF ENERGY

The energy which a body has in virtue of its motion
is called kinetic energy.
A system may also have energy in virtue of its con-

figuration, if the forces of the system are such that the

system will do work against external resistance while it

passes into another configuration. This energy is called

Potential Energy. Thus when a stone has been lifted

to a certain height above the earth's surface, the system
of two bodies, the stone and the earth, has potential

energy, and is able to do a certain amount of work

during the descent of the stone. This potential energy
is due to the fact that the stone and the earth attract

each other, so that work has to be spent by the man
who lifts the stone and draws it away from the earth,
and after the stone is lifted the attraction between the

earth and the stone is capable of doing work as the stone

descends. This kind of energy, therefore, depends
upon the work which the forces of the system would do

* Lectures on Natural Philosophy [1807], Lecture VIII.
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if the parts of the system were to yield to the action

of these forces. This is called the "Sum of the Ten-
sions" by Helmholtz in his celebrated memoir on the
"
Conservation of Energy."

* Thomson called it Statical

Energy; it has also been called Energy of Position;
but Rankine introduced the term Potential Energyf a

very felicitous expression, since it not only signifies the

energy which the system has not in actual possession,
but only has the power to acquire, but it also indicates

its connexion with what has been called (on other

grounds) the Potential Function^.
The different forms in which energy has been found

to exist in material systems have been placed in one or

other of these two classes Kinetic Energy, due to

motion, and Potential Energy, due to configuration.
Thus a hot body, by giving out heat to a colder body,

may be made to do work by causing the cold body to

expand in opposition to pressure. A material system,
therefore, in which there is a non-uniform distribution

of temperature has the capacity of doing work, or energy.
This energy is now believed to be kinetic energy, due to

a motion of agitation in the smallest parts of the hot body.
Gunpowder has energy, for when fired it is capable

of setting a cannon-ball in motion. The energy of gun-
powder is Chemical Energy, arising from the power
which the constituents of gunpowder possess of

arranging themselves in a new manner when exploded,
so as to occupy a much larger volume than the gun-
powder does. In the present state of science chemists

figure to themselves chemical action as a rearrangement
of particles under the action of forces tending to produce

*
Berlin, 1847: translated in Taylor's Scientific Memoirs, Feb.

1853. [Remarkable mainly for its wide ramifications into electric

and chemical theory.]
f The vis potentialis of Daniel Bernoulli, as contrasted with

vis viva, e.g. for the case of a bent spring; cf. Euler, De Curvis
Elasticis, in Appendix to Solutio Problematis Isoperimetrici . . .

{ The term Potential was employed independently by Gauss
and by Green, and so probably originated with D. Bernoulli.
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this change of arrangement. From this point of view,

therefore, chemical energy is potential energy.
Air, compressed in the chamber of an air-gun, is

capable of propelling a bullet. The energy of com-

pressed air was at one time supposed to arise from the

mutual repulsion of its particles. If this explanation
were the true one its energy would be potential energy.
In more recent times it has been thought that the

particles of the air are in a state of motion, and that

its pressure is caused by the impact of these particles
on the sides of the vessel. According to this theory
the energy of compressed air is kinetic energy.
There are thus many different modes in which a

material system may possess energy, and it may be

doubtful in some cases whether the energy is of the

kinetic or the potential form. The nature of energy,
however, is the same in whatever form it may be found.

The quantity of energy can always be expressed as

equated to that of a body of a definite mass moving with

a definite velocity.



CHAPTER VI

RECAPITULATION

98. RETROSPECT OF ABSTRACT DYNAMICS

WE have now gone through that part of the funda-
mental science of the motion of matter which we have
been able to treat in a manner sufficiently elementary
to be consistent with the plan of this book.

It remains for us to take a general view of the rela-

tions between the parts of this science, and of the whole
to other physical sciences, and this we can now do in

a more satisfactory way than we could before we had
entered into the subject.

99. KINEMATICS

We began with kinematics, or the science of pure
motion. In this division of the subject the ideas brought
before us are those of space and time. The only attri-

bute of matter which comes before us is its continuity
of existence in space and time the fact, namely, that

every particle of matter, at any instant of time, is in

one place and in one only, and that its change of place

during any interval of time is accomplished by moving
along a continuous path.

Neither the force which affects the motion of the

body, nor the mass of the body, on which the amount of

force required to produce the motion depends, come
under our notice in the pure science of motion.

100. FORCE

In the next division of the subject force is considered
in the aspect of that which alters the motion of a mass.

If we confine our attention to a single body, our in-

vestigation enables us, from observation of its motion, to
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determine the direction and magnitude of the resultant

force which acts on it, and this investigation is the

exemplar and type of all researches undertaken for the

purpose of the discovery and measurement of physical
forces.

But this may be regarded as a mere application of

the definition of a force, and not as a new physical
truth.

It is when we come to define equal forces as those

which produce equal rates of acceleration in the same

mass, and equal masses as those which are equally
accelerated by equal forces, that we find that these

definitions of equality amount to the assertion of the

physical truth, that the comparison of quantities of

matter by the forces required to produce in them a given
acceleration is a method which always leads to con-

sistent results, whatever be the absolute values of the

forces and the accelerations.

101. STRESS

The next step in the science of force is that in which
we pass from the consideration of a force as acting on
a body, to that of its being one aspect of that mutual
action between two bodies, which is called by Newton
Action and Reaction, and which is now more briefly

expressed by the single word Stress.

102. RELATIVITY OF DYNAMICAL KNOWLEDGE

Our whole progress up to this point may be described

as a gradual development of the doctrine of relativity of

all physical phenomena. Position we must evidently

acknowledge to be relative, for we cannot describe the

position of a body in any terms which do not express
relation. The ordinary language about motion and rest

does not so completely exclude the notion of their being
measured absolutely, but the reason of this is, that in

our ordinary language we tacitly assume that the earth

is at rest.
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As our ideas of space and motion become clearer, we
come to see how the whole body of dynamical doctrine

hangs together in one consistent system.
Our primitive notion may have been that to know

absolutely where we are, and in what direction we are

going, are essential elements of our.knowledge as con-

scious beings.
But this notion, though undoubtedly held by many

wise men in ancient times, has been gradually dispelled
from the minds of students of physics.
There are no landmarks in space; one portion of

space is exactly like every other portion, so that we
cannot tell where we are. We are, as it were, on an
unruffled sea, without stars, compass, soundings, wind,
or tide, and we cannot tell in what direction we are

going. We have no log which we can cast out to take

a dead reckoning by; we may compute our rate of

motion with respect to the neighbouring bodies, but

we do not know how these bodies may be moving in

space.

103. RELATIVITY OF FORCE

We cannot even tell what force may be acting on us
;

we can only tell the difference between the force acting
on one thing and that acting on another*.

We have an actual example of this in our every-day

experience. The earth moves round the sun in a year
at a distance of 91,520,000 miles or 1-473 x io13

centimetres-]-. It follows from this that a force is exerted

on the earth in the direction of the sun, which produces
an acceleration of the earth in the direction of the sun
of about 0-019 m feet and seconds, or about y^ of the

intensity of gravity at the earth's surface.

A force equal to the sixteen-hundredth part of the

weight of a body might be easily measured by known

experimental methods, especially if the direction of this

* See Appendix I; especially p. 143.

t More modern values are 9-28 x io7
miles, or 1-494 x io" cm.
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force were differently inclined to the vertical at different

hours of the day.
Now, if the attraction of the sun were exerted upon

the solid part of the earth, as distinguished from the

movable bodies on which we experiment, a body sus-

pended by a string, and moving with the earth, would
indicate the difference between the solar action on the

body, and that on the earth as a whole.

If, for example, the sun attracted the earth and not

the suspended body, then at sunrise the point of sus-

pension, which is rigidly connected with the earth,
would be drawn towards the sun, while the suspended
body would be acted on only by the earth's attraction,

and the string would appear to be deflected away from
the sun by a sixteen-hundredth part of the length of

the string. At sunset the string would be deflected away
from the setting sun by an equal amount; and as the

sun sets at a different point of the compass from that

at which he rises the deflexions of the string would be
in different directions, and the difference in the position
of the plumb-line at sunrise and sunset would be easily
observed.

But instead of this, the attraction of gravitation is

exerted upon all kinds of matter equally at the same
distance from the attracting body. At sunrise and
sunset the centre of the earth and the suspended body
are nearly at the same distance from the sun, and no
deflexion of the plumb-line due to the sun's attraction

can be observed at these times. The attraction of the

sun, therefore, in so far as it is exerted equally upon all

bodies on the earth, produces no effect on their relative

motions. It is only the differences of the intensity and
direction of the attraction acting on different parts of

the earth which can produce any effect, and these

differences are so small for bodies at moderate distances

that it is only when the body acted on is very large, as

in the case of the ocean, that their effect becomes per-

ceptible in the form of tides.
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104. ROTATION

In what we have hitherto said about the motion of

bodies, we have tacitly assumed that in comparing one

configuration of the system with another, we are able

to draw a line in the final configuration parallel to a

line in the original configuration. In other words, we
assume that there are certain directions in space which

may be regarded as constant, and to which other direc-

tions may be referred during the motion of the system.
In astronomy, a line drawn from the earth to a star

may be considered as fixed in direction, because the

relative motion of the earth and the star is in general
so small compared with the distance between them that

the change of direction, even in a century, is very small.

But it is manifest that all such directions of reference

must be indicated by the configuration of a material

system existing in space, and that if this system were

altogether removed, the original directions of reference

could never be recovered.

But though it is impossible to determine the absolute

velocity of a body in space, it is possible to determine
whether the direction of a line in a material system is

constant or variable.

For instance, it is possible by observations made on
the earth alone, without reference to the heavenly bodies,
to determine whether the earth is rotating or not.

So far as regards the geometrical configuration of the
earth and the heavenly bodies, it is evidently all the same*

"Whether the sun, predominant in heaven,
Rise on the earth, or earth rise on the sun;
He from the east his flaming road begin,
Or she from west her silent course advance
With inoffensive pace that spinning sleeps
On her soft axle, while she paces even,
And bears thee soft with the smooth air along."

* From the discussion on the celestial motions in Paradise Lost

(Book vin, lines 160-6) : Milton's interview with Galileo when as
a young man he visited Italy may be recalled.

62
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The distances between the bodies composing the

universe, whether celestial or terrestrial, and the angles
between the lines joining them, are all that can be
ascertained without an appeal to dynamical principles,
and these will not be affected if any motion of rotation

of the whole system, similar to that of a rigid body
about an axis, is combined with the actual motion; so

that from a geometrical point of view the Copernican
system, according to which the earth rotates, has no

advantage, except that of simplicity, over that in which
the earth is supposed to be at rest, and the apparent
motions of the heavenly bodies to be their absolute

motions.

Even if we go a step further, and consider the dyna-
mical theory of the earth rotating round its axis, we

may account for its oblate figure, and for the equi-
librium of the ocean and of all other bodies on its

surface on either of two hypotheses that of the motion
of the earth round its axis, or that of the earth not

rotating, but caused to assume its oblate figure by a

force acting outwards in all directions from its axis, the

intensity of this force increasing as the distance from
the axis increases. Such a force, if it acted on all

kinds of matter alike, would account not only for the

oblateness of the earth's figure, but for the conditions

of equilibrium of all bodies at rest with respect to the

earth.

It is only when we go further still, and consider the

phenomena of bodies which are in motion with respect
to the earth*, that we are really constrained to admit
that the earth rotates.

105. NEWTON'S DETERMINATION OF THE ABSOLUTE

VELOCITY OF ROTATION

Newton was the first to point out that the absolute

motion of rotation of the earth might be demonstrated

by experiments on the rotation of a material system.
* As in Art. 105. See also Appendix I, p. 142.
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For instance, if a bucket of water is suspended from a

beam by a string, and the string twisted so as to keep
the bucket spinning round a vertical axis, the water
will soon spin round at the same rate as the bucket, so

that the system of the water and the bucket turns round
its axis like a solid body.
The water in the spinning bucket rises up at the

sides, and is depressed in the middle, showing that in

order to make it move in a circle a pressure must be
exerted towards the axis. This concavity of the surface

depends on the absolute motion of rotation of the water
and not on its relative rotation.

For instance, it does not depend on the rotation

relative to the bucket. For at the beginning of the

experiment, when we set the bucket spinning, and
before the water has taken up the motion, the water
and the bucket are in relative motion, but the surface

of the water is flat, because the water is not rotating,
but only the bucket.

When the water and the bucket rotate together,
there is no motion of the one relative to the other, but
the surface of the water is hollow, because it is rotating.
When the bucket is stopped, as long as the water

continues to rotate its surface remains hollow, showing
that it is still rotating though the bucket is not.

It is manifestly the same, as regards this experiment,
whether the rotation be in the direction of the hands
of a watch or the opposite direction, provided the rate

of rotation is the same.
Now let us suppose this experiment tried at the

North Pole. Let the bucket be made, by a proper
arrangement of clockwork, to rotate either in the direc-

tion of the hands of a watch, or in the opposite direction,
at a perfectly regular rate.

If it is made to turn round by clockwork once in

twenty-four hours (sidereal time) the way of the hands
of a watch laid face upwards, it will be rotating as

regards the earth, but not rotating as regards the stars.
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If the clockwork is stopped, it will rotate with

respect to the stars, but not with respect to the earth.

Finally, if it is made to turn round once in twenty-
four hours (sidereal time) in the opposite direction, it

will be rotating with respect to the earth at the same
rate as at first, but instead of being free from rotation

as respects the stars, it will be rotating at the rate of one
turn in twelve hours.

Hence if the earth is at rest, and the stars moving
round it, the form of the surface will be the same in the

first and last case; but if the earth is rotating, the

water will be rotating in the last case but not in the

first, and this will be made manifest by the water rising

higher at the sides in the last case than in the first.

The surface of the water will not be really concave
in any of the cases supposed, for the effect of gravity

acting towards the centre of the earth is to make the

surface convex, as the surface of the sea is, and the

rate of rotation in our experiment is not sufficiently

rapid to make the surface concave. It will only make
it slightly less convex than the surface of the sea in the

last case, and slightly more convex in the first.

But the difference in the form of the surface of

the water would be so exceedingly small, that with our
methods of measurement it would be hopeless to

attempt to determine the rotation of the earth in this

way.

1 06. FOUCAULT'S PENDULUM

The most satisfactory method of making an experi-
ment for this purpose is that devised by M. Foucault*.

A heavy ball is hung from a fixed point by a wire, so

that it is capable of swinging like a pendulum in any
vertical plane passing through the fixed point.

* Nowadays the fixity of direction in space of the plane of

rotation of a rapidly spinning wheel, freely pivoted, a method
also originated by Foucault, would reveal it most readily. Cf.

Art. 71. The gyrostatic compass interacts with the earth's rota-

tion, on the same principle.
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In starting the pendulum care must be taken that

the wire, when at the lowest point of the swing, passes

exactly through the position it assumes when hanging
vertically. If it passes on one side of this position, it

will return on the other side, and this motion of the

pendulum round the vertical instead of through the

vertical must be carefully avoided, because we wish to

get rid of all motions of rotation either in one direction

or the other.

Let us consider the angular momentum of the pen-
dulum about the vertical line through the fixed point.
At the instant at which the wire of the pendulum

passes through the vertical line, the angular momentum
about the vertical line is zero.

The force of gravity always acts parallel to this

vertical line, so that it cannot produce angular momen-
tum round it. The tension of the wire always acts

through the fixed point, so that it cannot produce
angular momentum about the vertical line.

Hence the pendulum can never acquire angular
momentum about the vertical line through the point of

suspension.
Hence when the wire is out of the vertical, the

vertical plane through the centre of the ball and the

point of suspension cannot be rotating; for if it were,
the pendulum would have an angular momentum about

the vertical line*.

Now let us suppose this experiment performed at

the North Pole. The plane of vibration of the pendulum
will remain absolutely constant in direction, so that if

the earth rotates, the rotation of the earth will be made
manifest.

* But if from want of precaution the ball described an open
elliptic curve, however elongated, this curve of vibration would
rotate spontaneously, through an angle Ji2 in each revolution of
the ball, and in the same direction, where is the (small) extent
of the conical angle traced out by the wire. This may readily
mask the effect of the earth's rotation. If the bob were free to
revolve on the wire as axis, that body would turn through Q in

each revolution.
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We have only to draw a line on the earth parallel
to the plane of vibration, and to compare the position
of this line with that of the plane of vibration at a

subsequent time.

As a pendulum of this kind properly suspended will

swing for several hours, it is easy to ascertain whether
the position of the plane of vibration is constant as

regards the earth, as it would be if the earth is at rest,

or constant as regards the stars, if the stars do not move
round the earth.

We have supposed, for the sake of simplicity in the

description, that the experiment is made at the North
Pole. It is not necessary to go there in order to

demonstrate the rotation of the earth. The only region
where the experiment will not show it is at the equator.
At every other place the pendulum will indicate the

rate of rotation of the earth with respect to the vertical

line at that place. If at any instant the plane of the

pendulum passes through a star near the horizon either

rising or setting, it will continue to pass through that

star as long as it is near the horizon. That is to say,
the horizontal part of the apparent motion of a star on
the horizon is equal to the rate of rotation of the plane
of vibration of the pendulum.

It has been observed that the plane of vibration

appears to rotate in the opposite direction in the

southern hemisphere, and by a comparison of the rates

at various places the actual time of rotation of the earth

has been deduced without reference to astronomical

observations. The mean value, as deduced from these

experiments by Messrs Galbraith and Haughton in

their Manual of Astronomy, is 23 hours 53 minutes

37 seconds. The true time of rotation of the earth is

23 hours 56 minutes 4 seconds mean solar time.
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107. MATTER AND ENERGY*

All that we know about matter relates to the series

of phenomena in which energy is transferred from one

portion of matter to another, till in some part of the

series our bodies are affected, and we become conscious

of a sensation.

By the mental process which is founded on such
sensations we come to learn the conditions of these

sensations, and to trace them to objects which are not

part of ourselves, but in every case the fact that we
learn is the mutual action between bodies. This
mutual action we have endeavoured to describe in this

treatise. Under various aspects it is called Force,
Action and Reaction, and Stress, and the evidence of

it is the change of the motion of the bodies between
which it acts.

The process by which stress produces change of

motion is called Work, and, as we have already shown,
work may be considered as the transference of Energy
from one body or system to another.

Hence, as we have said, we are acquainted with
matter only as that which may have energy communi-
cated to it from other matter, and which may, in its

turn, communicate energy to other matter.

Energy, on the other hand, we know only as that

which in all natural phenomena is continually passing
from one portion of matter to another.

108. TEST OF A MATERIAL SUBSTANCE

Energy cannot exist except in connexion with matter.

Hence since, in the space between the sun and the earth,
the luminous and thermal radiations, which have left

the sun and which have not reached the earth, possess

energy, the amount of which per cubic mile can be

measured, this energy must belong to matter existing
* See Appendix II.
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in the interplanetary spaces, and since it is only by the

light which reaches us that we become aware of the

existence of the most remote stars, we conclude that

the matter which transmits light is disseminated through
the whole of the visible universe.

109. ENERGY NOT CAPABLE OF IDENTIFICATION

We cannot identify a particular portion of energy, or

trace it through its transformations. It has no individual

existence, such as that which we attribute to particular

portions of matter.

The transactions of the material universe appear to

be conducted, as it were, on a system of credit*. Each
transaction consists of the transfer of so much credit

or energy from one body to another. This act of

transfer or payment is called work. The energy so

transferred does not retain any character by which it

can be identified when it passes from one form to

another.

no. ABSOLUTE VALUE OF THE ENERGY OF A BODY
UNKNOWN

The energy of a material system can only be esti-

mated in a relative manner.
In the first place, though the energy of the motion

of the parts relative to the centre of mass of the system
may be accurately defined, the whole energy consists

of this together with the energy of a mass equal to that

of the whole system moving with the velocity of the

centre of mass. Now this latter velocity that of the

centre of mass can be estimated only with reference to

some body external to the system, and the value which
we assign to this velocity will be different according to

the body which we select as our origin.
Hence the estimated kinetic energy of a material
*
Except perhaps that credit can be artificially increased, or

inflated.
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system contains a part, the value of which cannot be
determined except by the arbitrary selection of an

origin. The only origin which would not be arbitrary
is the centre of mass of the material universe, but this

is a point the position and motion of which are quite
unknown to us.

in. LATENT ENERGY

But the energy of a material system is indeterminate

for another reason. We cannot reduce the system to a

state in which it has no energy, and any energy which
is never removed from the system must remain un-

perceived Jby us, for it is only as it enters or leaves the

system that we can take any account of it.

We must, therefore, regard the energy of a material

system as a quantity of which we may ascertain the

increase or diminution as the system passes from one
definite condition to another. The absolute value of

the energy in the standard condition is unknown to

us, and it would be of no value to us if we did know it,

as all phenomena depend on the variations of the energy,
and not on its absolute value.

112. A COMPLETE DISCUSSION OF ENERGY WOULD
INCLUDE THE WHOLE OF PHYSICAL SCIENCE

The discussion of the various forms of energy
gravitational, electro-magnetic, molecular, thermal, etc.

with the conditions of the transference of energy from
one form to another, and the constant dissipation of the

energy available for producing work, constitutes the

whole of physical science, in so far as it has been de-

veloped in the dynamical form under the various

designations of Astronomy, Electricity, Magnetism,
Optics, Theory of the Physical States of Bodies,

Thermo-dynamics, and Chemistry.



CHAPTER VII

THE PENDULUM AND GRAVITY

113. ON UNIFORM MOTION IN A CIRCLE

LET M (fig. n) be a body moving in a circle with

velocity V.

Let OM = r be the radius of the circle.

The direction of the velocity
of M is that of the tangent to

the circle. Draw OV parallel to

this direction through the centre

of the circle and equal to the

distance described in unit of time
with velocity V, then OV = V.

If we take O as the origin of

the diagram of velocity, V will

represent the velocity of the

body at M.
As the body moves round the

circle, the point V will also

describe a circle, and the velocity of the point V will

be to that ofM as OV to OM.
If, therefore, we draw OA in MO produced, and

therefore parallel to the direction of motion of V, and
make OA a third proportional to OM and OV, and
if we assume O as the origin of the diagram of rate of

acceleration, then the point A will represent the velocity
of the point V, or, what is the same thing, the rate of

acceleration of the point M.
Hence, when a body moves with uniform velocity in

a circle, its acceleration is directed towards the centre

of the circle, and is a third proportional to the radius

of the circle and the velocity of the body.
The force acting on the body M is equal to the

Fig. ii.
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product of this acceleration into the mass of the body,
or if F be this force

114. CENTRIFUGAL FORCE

This force F is that which must act on the body M
in order to keep it in the circle of radius r, in which
it is moving with velocity V.

The direction of this force is towards the centre of

the circle.

If this force is applied by means of a string fastened

to the body, the string will be in a state of tension.

To a person holding the other end of the string this

tension will appear to be directed towards the body M,
as if the bodyM had a tendency to move away from the

centre of the circle which it is describing.
Hence this latter force is often called Centrifugal

Force.

The force which really acts on the body, being directed

towards the centre of the circle, is called Centripetal

Force, and in some popular treatises the centripetal
and centrifugal forces are described as opposing and

balancing each other. But they are merely the different

aspects of the same stress [acting in the string].

115. PERIODIC TIME

The time of describing the circumference of the circle

is called the Periodic Time. If TT represents the ratio

of the circumference of a circle to its diameter, which
is 3'i4i59. ., the circumference of a circle of radius r

is 27rr
;
and since this is described in the periodic time T

with velocity V, we have

27TT = VT.

Hence F
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The rate of circular motion is often expressed by the

number of revolutions in unit of time. Let this number
[the frequency] be denoted by n, then

nT= i

and F=

1 1 6. ON SIMPLE HARMONIC VIBRATIONS

If while the body M (fig. n) moves in a circle with
uniform velocity another point P moves in a fixed

diameter of the circle, so as to be always at the foot

of the perpendicular from M on that diameter, the

body P is said to execute Simple Harmonic Vibrations.

The radius, r, of the circle is called the Amplitude of

the vibration.

The periodic time of M is called the Periodic Time
of Vibration.

The angle which OM makes with the positive
direction of the fixed diameter is called the Phase of

the vibration.

Iiy. ON THE FORCE ACTING ON THE

VIBRATING BODY

The only difference between the motions of M and
P is that M has a vertical motion compounded with

a horizontal motion which is the same as that of P.

Hence the velocity and the acceleration of the two bodies

differ only with respect to the vertical part of the

velocity and acceleration of M.
The acceleration of P is therefore the horizontal

component of that of M, and since the acceleration

of M is represented by OA, which is in the direction

of MO produced, the acceleration of P will be repre-
sented by OB, where B is the foot of the perpendicular
from A on the horizontal diameter. Now by similar

triangles OMP, OAB
OM : OA = OP : OB.
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But OM = r and OA = -
477*^

Hence OB = -
^J OP

- -
47r

2 2OP.

In simple harmonic vibration, therefore, the ac-

celeration is always directed towards the centre of

vibration, and is equal to the distance from that centre

multiplied by 47r
2w 2

,
and if the mass of the vibrating

body is P, the force acting on it at a distance x from
O is 47r

2w 2P*.
It appears, therefore, that a body which executes

simple harmonic vibrations in a straight line is acted

on by a force which varies as the distance from the

centre of vibration, and the value of this force at a

given distance depends only on that distance, on the

mass of the body, and on the square of the number
of vibrations in unit of time, and is independent of the

amplitude of the vibrations.

118. ISOCHRONOUS VIBRATIONS

It follows from this that if a body moves in a straight
line and is acted on by a force directed towards a fixed

point on the line and varying as the distance from that

point, it will execute simple harmonic vibrations, the

periodic time of which will be the same whatever the

amplitude of vibration.

If for a particular kind of displacement of a body,
as turning round an axis, the force tending to bring it

back to a given position varies as the displacement,
the body will execute simple harmonic vibrations

about that position, the periodic time of which will be

independent of their amplitude.
Vibrations of this kind, which are executed in the

same time whatever be their amplitude, are called

Isochronous Vibrations.
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119. POTENTIAL ENERGY OF THE VIBRATING BODY

The velocity of the body when it passes through the

point of equilibrium is equal to that of the body moving
in the circle, or

V = 27rrn,

where r is the amplitude of vibration and n is the

number of double vibrations per second.

Hence the kinetic energy of the vibrating body at

the point of equilibrium is

where M is the mass of the body.
At the extreme elongation, where x = r, the velocity,

and therefore the kinetic energy, of the body is zero.

The diminution of kinetic energy must correspond to

an equal increase of potential energy. Hence if we
reckon the potential energy from the configuration in

which the body is at its point of equilibrium, its

potential energy when at a distance r from this point
is 27TzMn 2r2 .

This is the potential energy of a body which vibrates

isochronously, and executes n double vibrations per
second when it is at rest at the distance, r, from the

point of equilibrium. As the potential energy does not

depend on the motion of the body, but only on its

position, we may write it

27T
2M 2*2

,

where x is the distance from the point of equilibrium.

120. THE SIMPLE PENDULUM

The simple pendulum consists of a small heavy body
called the bob, suspended from a fixed point by a fine

string of invariable length. The bob is supposed to

be so small that its motion may be treated as that of a

material particle, and the string is supposed to be so
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fine that we may neglect its mass and weight. The
bob is set in motion so as to swing through a small

angle in a vertical plane. Its path, therefore, is an arc

of a circle, whose centre is the point of suspension,
O, and whose radius is the length of the string, which
we shall denote by /.

Let O (fig. 12) be the point
B

of suspension and OA the

position of the pendulum when

hanging vertically. When the

bob is at M it is higher than
when it is at A by the height

where AM is the

Mchord of the arc AM and
AB = 2l.

If M be the mass of the bob
and g the intensity of gravity
the weight of the bob will be Mg and the work done

against gravity during the motion of the bob from A
to M will be MgAP. This, therefore, is the potential

energy of the pendulum when the bob is at M, reckon-

ing the energy zero when the bob is at A.
We may write this energy

The potential energy of the bob when displaced

through any arc varies as the square of the chord of

that arc.

If it had varied as the square of the arc itself in

which the bob moves, the vibrations would have been

strictly isochronous. As the potential energy varies

more slowly than the square of the arc, the period of

each vibration will be greater when the amplitude is

greater.
For very small vibrations, however, we may neglect

the difference between the chord and the arc, and
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denoting the arc by x we may write the potential

But we have already shown that in harmonic vibrations

the potential energy is 27r
2M 2#2

.

Equating these two expressions and clearing fractions

wefind

where g is the intensity of gravity, TT is the ratio of the

circumference of a circle to its diameter, n is the number
of vibrations of the pendulum in unit of time, and / is

the length of the pendulum.

121. A RIGID PENDULUM

If we could construct a pendulum with a bob so

small and a string so fine that it might be regarded
for practical purposes as a simple pendulum, it would
be easy to determine g by this method. But all real

pendulums have bobs of considerable size, and in

order to preserve the length invariable the bob must be
connected with the point of suspension by a stout rod,
the mass of which cannot be neglected. It is always
possible, however, to determine the length of a simple
pendulum whose vibrations would be executed in the

same manner as those of a pendulum of any shape.
The complete discussion of this subject would lead

us into calculations beyond the limits of this treatise.

We may, however, arrive at the most important result

without calculation as follows.

The motion of a rigid body in one plane may be

completely defined by stating the motion of its centre

of mass, and the motion of the body round its centre

of mass.

The force required to produce a given change in the

motion of the centre of mass depends only on the mass
of the body (Art. 63).



vn] SOLID PENDULUM 99

The moment required to produce a given change of

angular velocity about the centre of mass depends on the

distribution of the mass, being greater the further the

different parts of the body are from the centre of mass.

If, therefore, we form a system of two particles

rigidly connected, the sum of the masses being equal
to the mass of a pendulum, their centre of mass coin-

ciding with that of the pendulum, and their distances

from the centre of mass being such that a couple
of the same moment is required to produce a given

rotatory motion about the centre of mass of the new

system as about that of the pendulum, then the new

system will for motions in a certain plane be dynamic-
ally equivalent to the given pendulum, that is, if the

two systems are moved in the same way the forces

required to guide the motion will be equal. Since the

two particles may have any ratio, provided the sum
of their masses is equal to the mass of the pendulum,
and since the line joining them may have any direction

provided it passes through the centre of mass, we may
arrange them so that one of the particles corresponds to

any given point of the pendulum, _______
say, the point of suspension P

_^
(fig. 13). The mass of this par- ^

~

ticle and the position and mass
of the other at Q will be determinate. The position of

the second particle, Q, is called the Centre of Oscilla-

tion. Now in the system of two particles, if one of

them, P, is fixed and the other, Q, allowed to swing
under the action of gravity, we have a simple pendulum.
For one of the particles, P, acts as the point of suspen-
sion, and the other, Q, is at an invariable distance from

it, so that the connexion between them is the same as if

they were united by a string of length / = PQ.
Hence a pendulum of any form swings in exactly

the same manner as a simple pendulum whose length
is the distance from the centre of suspension to the

centre of oscillation.

72
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122. INVERSION OF THE PENDULUM

Now let us suppose the system of two particles

inverted, Q being made the point of suspension and
P being made to swing. We have now a simple pen-
dulum of the same length as before. Its vibrations

will therefore be executed in the same time. But it

is dynamically equivalent to the pendulum suspended
by its centre of oscillation.

Hence if a pendulum be inverted and suspended by
its centre of oscillation its vibrations will have the

same period as before, and the distance between the

centre of suspension and that of oscillation will be

equal to that of a simple pendulum having the same
time of vibration.

It was in this way that Captain Kater determined
the length of the simple pendulum which vibrates

seconds.

He constructed a pendulum which could be made to

vibrate about two knife edges, on opposite sides of the

centre of mass and at unequal distances from it.

By certain adjustments, he made the time of vibra-

tion the same whether the one knife edge or the other

were the centre of suspension. The length of the

corresponding simple pendulum was then found by
measuring the distance between the knife edges.

123. ILLUSTRATION OF KATER'S PENDULUM

The principle of Kater's Pendulum may be illus-

trated by a very simple and striking experiment. Take
a flat board of any form (fig. 14), and drive a piece of

wire through it near its edge, and allow it to hang in

a vertical plane, holding the ends of the wire by the

finger and thumb. Take a small bullet, fasten it to the

end of a thread and allow the thread to pass over the

wire, so that the bullet hangs close to the board. Move
the hand by which you hold the wire horizontally in

the plane of the board, and observe whether the board
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moves forwards or backwards with respect to the bullet.

If it moves forwards lengthen the string, if backwards

shorten it till the bullet and the board move together.
Now mark the point of the board opposite the centre

of the bullet and fasten the string to the

wire. You will find that if you hold the

wire by the ends and move it in any
manner, however sudden and irregular,
in the plane of the board, the bullet will

never quit the marked spot on the board.

Hence this spot is called the centre of

oscillation, because when the board is

oscillating about the wire when fixed it

oscillates as if it consisted of a single

particle placed at the spot.
Fi - J 4-

It is also called the centre of percussion, because if

the board is at rest and the wire is suddenly moved

horizontally the board will at first begin to rotate about

the spot as a centre.

124. DETERMINATION OF THE INTENSITY OF GRAVITY

The most direct method of determining g is, no

doubt, to let a body fall and find what velocity it has

gained in a second, but it is very difficult to make accu-

rate observations of the motion of bodies when their

velocities are so great as 981 centimetres per second,
and besides, the experiment would have to be conducted
in a vessel from which the air has been exhausted, as

the resistance of the air to such rapid motion is very
considerable, compared with the weight of the falling

body.
The experiment with the pendulum is much more

satisfactory. By making the arc of vibration very small,
the motion of the bob becomes so slow that the resist-

ance of the air can have very little influence on the time
of vibration. In the best experiments the pendulum
is swung in an air-tight vessel from which the air is

exhausted.
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Besides this, the motion repeats itself, and the pen-
dulum swings to and fro hundreds, or even thousands,
of times before the various resistances to which it is

exposed reduce the amplitude of the vibrations till they
can no longer be observed.

Thus the actual observation consists not in watching
the beginning and end of one vibration, but in deter-

mining the duration of a series of many hundred
vibrations, and thence deducing the time of a single
vibration.

The observer is relieved from the labour of counting
the whole number of vibrations, and the measurement
is made one of the most accurate in the whole range of

practical science by the following method.

125. METHOD OF OBSERVATION

A pendulum clock is placed behind the experimental

pendulum, so that when both pendulums are hanging
vertically the bob, or some other part of the experi-
mental pendulum, just hides a white spot on the clock

pendulum, as seen by a telescope fixed at some distance

in front of the clock.

Observations of the transit of "clock stars" across

the meridian are made from time to time, and from
these the rate of the clock is deduced in terms of
" mean solar time."

The experimental pendulum is then set a swinging,
and the two pendulums are observed through the

telescope. Let us suppose that the time of a single
vibration is not exactly that of the clock pendulum, but
a little more.
The observer at the telescope sees the clock pendulum

always gaining on the experimental pendulum, till at

last the experimental pendulum just hides the white

spot on the clock pendulum as it crosses the vertical

line. The time at which this takes place is observed

and recorded as the First Positive Coincidence.

The clock pendulum continues to gain on the other,
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and after a certain time the two pendulums cross the

vertical line at the same instant in opposite directions.

The time of this is recorded as the First Negative Coin-
cidence. After an equal interval of time there will be a

second positive coincidence, and so on.

By this method the clock itself counts the number, N,
of vibrations of its own pendulum between the coinci-

dences. During this time the experimental pendulum
has executed one vibration less than the clock. Hence
the time of vibration of the experimental pendulum is

N
.,_ seconds of clock time.

When there is no exact coincidence, but when the

clock pendulum is ahead of the experimental pendulum
at one passage of the vertical and behind at the next,
a little practice on the part of the observer will enable

him to estimate at what time between the passages the

two pendulums must have been in the same phase. The

epoch of coincidence can thus be estimated to a fraction

of a second.

126. ESTIMATION OF ERROR

The experimental pendulum will go on swinging for

some hours, so that the whole time to be measured may
be ten thousand or more vibrations.

But the error introduced into the calculated time of

vibration

the time
, by a mistake even of a whole second in noting
of vibration, may be made exceedingly small

by prolonging the experiment.
For if we otobserve the first and the nth coincidence,

and find that they are separated by an interval of

Af seconds of the clock, the experimental pendulum
will have lost n vibrations, as compared with the clock,
and will have made N-n vibrations in N seconds.

N
Hence the time of a single vibration is T -.

__

seconds of clock time.

Let us suppose, however, that by a mistake of a
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second we note down the last coincidence as taking
place N + i seconds after the first. The value of T as

deduced from this result would be

and the error introduced by the mistake of a second
will be Ar , A T

T - T= I

+ i - n N-n

If N is 10,000 and n is 100, a mistake of one second
in noting the time of coincidence will alter the value of

T only about one-millionth part of its value.



CHAPTER VIII

UNIVERSAL GRAVITATION

127. NEWTON'S METHOD

THE most instructive example of the method of dynami-
cal reasoning is that by which Newton determined
the law of the force with which the heavenly bodies act

on each other. .

The process of dynamical reasoning consists in

deducing from the successive configurations of the

heavenly bodies, as observed by astronomers, their

velocities and their accelerations, and in this way
determining the direction and the relative magnitude
of the force which acts on them.

Kepler had already prepared the way for Newton's

investigation by deducing from a careful study of the

observations of Tycho Brahe the three laws of planetary
motion which bear his name.

128. KEPLER'S LAWS

Kepler's Laws are purely kinematical. They com-

pletely describe the motions of the planets, but they say

nothing about the forces by which these motions are

determined.

Their dynamical interpretation was discovered by
Newton.
The first and second laws relate to the motion of a

single planet.
Law I. The areas swept out by the vector drawn

from the sun to a planet are proportional to the times

of describing them. If h denotes twice the area swept
out in unit of time, twice the area swept out in time t

will be ht, and if P is the mass of the planet, Pht will

be the mass-area, as defined in Article 68. Hence the*

angular momentum of the planet about the sun, which
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is the rate of change of the mass-area, will be Ph, a

constant quantity.
Hence, by Article 70, the force, if any, which acts

on the planet must have no moment with respect to

the sun, for if it had it would increase or diminish the

angular momentum at a rate measured by the value of

this moment.

Hence, whatever be the force which acts on the planet,
the direction of this force must always pass through
the sun.

129. ANGULAR VELOCITY

Definition. The angular velocity of a vector is the

rate at which the angle increases which it makes with
a fixed vector in the plane of its motion.

If o is the angular velocity of a vector, and r its length,
the rate at which it sweeps out an area is ^cor

2
. Hence,

and since h is constant, o>, the angular velocity of a

planet's motion round the sun, varies inversely as the

square of the distance from the sun.

This is true whatever the law of force may be, pro-
vided the force acting on the planet always passes

through the sun.

130. MOTION ABOUT THE CENTRE OF MASS

Since the stress between the planet and the sun acts

on both bodies, neither of them can remain at rest.

The only point whose

-p motion is not affected

by the stress is the

Fig. 15. centre of mass of the

two bodies.

If r is the distance SP (fig. 15), and if C is the centre

of mass, SC = -~ and CP =
-^ p.

The angular

S2 r2 PS 2h
momentum of P about C is Po> /c p.

2
=

, PX2 .

^o T r) ^o T fj
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131. THE ORBIT

We have already made use of diagrams of configura-
tion and of velocity in studying the motion of a material

system. These diagrams, however, represent only the

state of the system at a given instant; and this state is

indicated by the relative position of points corresponding
to the bodies forming the system.

It is often, however, convenient to represent in a

single diagram the whole series of configurations or

velocities which the system assumes. If we suppose
the points of the diagram to move so as continu-

ally to represent the state of the moving system, each

point of the diagram will trace out a line, straight or

curved.

On the diagram of configuration, this line is called,

in general, the Path of the body. In the case of the

heavenly bodies it is often called the Orbit.

132. THE HODOGRAPH

On the diagram of velocity the line traced out by
each moving point is called the Hodograph of the body
to which it corresponds.
The study of the Hodograph, as a method of investi-

gating the motion of a body, was introduced by Sir

W. R. Hamilton. The hodograph may be defined as

the path traced out by the extremity of a vector which

continually represents, in direction and magnitude, the

velocity of a moving body.
In applying the method of the hodograph to a planet,

the orbit of which is in one plane, we shall find it con-

venient to suppose the hodograph turned round its

origin through a right angle, so that the vector of the

hodograph is perpendicular instead of parallel to the

velocity it represents.
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133. KEPLER'S SECOND LAW
Law II. The orbit of a planet with respect to the

sun is an ellipse, the sun being in one of the foci.

Let APQB (fig. 1 6) be the elliptic orbit. Let S
be the sun in one focus, and let H be the other focus.

Produce SP to U,

U so that SU is equal
to the transverse

axis AB, and join

HU, then HU will

be proportional
and perpendicular
to the velocity atP.

For bisect HU
in Z and join ZP;
ZP will be a tan-

gent to the ellipse

at P; let SY be
a perpendicular
from S on this

tangent.
If v is the ve-

locity at P, and h twice the area swept out in unit of

time, h=vSY.
Also if b is half the conjugate axis of the ellipse

Now

hence

SY.HZ=b 2
.

Hence HU is always proportional to the velocity,

and it is perpendicular to its direction. Now SU is

always equal to AB. Hence the circle whose centre is

S and radius AB is the hodograph of the planet, H
being the origin of the hodograph.
The corresponding points of the orbit and the hodo-
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graph are those which lie in the same straight line

through S.

Thus P corresponds to U and Q to V.

The velocity communicated to the body during its

passage from P to Q is represented by the geometrical
difference between the vectors HU and HV, that is, by
the line UV, and it is perpendicular to this arc of the

circle, and is therefore, as we have already proved,
directed towards S.

If PQ is the arc described in [a very small] time, then
UV represents the acceleration [of velocity in that time

;]

and since UV is on a circle whose centre is S, UV will

be a measure of the angular [movement in that time] of

the planet about S. Hence the acceleration is propor-
tional to the angular velocity, and this by Art. 129 is

inversely as the square of the distance SP. Hence the

acceleration of the planet is in the direction of the sun,
and is inversely as the square of the distance from the

sun.

This, therefore, is the law according to which the

attraction of the sun on a planet varies as the planet
moves in its orbit and alters its distance from the sun.

134. FORCE ON A PLANET

As we have already shown, the orbit of the planet
with respect to the centre of mass of the sun and

planet has its dimensions in the ratio of S to S + P
to those of the orbit of the planet with respect to the

sun.

If 2a and zb are the axes of the orbit of the planet
with respect to the sun, the area is -nab, and if T is the

time of going completely round the orbit, the value of

h is 2?r ~~i . The velocity with respect to the sun is there-

fore 7T^ HU.
lo
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With respect to the centre of mass it is

The total acceleration of the planet towards the centre

of mass [in describing an arc PQ] is

S
TJV

S+PTb U

and the impulse on the planet whose mass is P is

therefore sp
STPTb UV'

Let t be the time of describing PQ, then twice the

h a2b
and UV = 2acot = 2a -% t = 477 ~-

2
t.

Hence the force on the planet [being impulse divided

by time] is sp ^

This then is the value of the stress or attraction

between a planet and the sun in terms of their masses

P and
,
their mean distance a, their actual distance r,

and the periodic time T.

135. INTERPRETATION OF KEPLER'S THIRD LAW

To compare the attraction between the sun and
different planets, Newton made use of Kepler's third

law.

Law III. The squares of the periodic times of differ-

ent planets are proportional to the cubes of their mean
a3 c

distances. In other words
yr2

is a constant, say 2
.

SP i

Hence F = c --.
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In the case of the smaller planets their masses are
o

so small, compared with that of the sun, that

p
may be put equal to i

,
so that F = c -% or the

attraction on a planet is proportional to its mass and

inversely as the square of its distance.

136. LAW OF GRAVITATION

This is the most remarkable fact about the attraction

of gravitation, that at the same distance it acts equally
on equal masses of substances of all kinds. This is

proved by pendulum experiments for the different

kinds of matter at the surface of the earth. Newton
extended the law to the matter of which the different

planets are composed.
It had been suggested, before Newton proved it,

that the sun as a whole attracts a planet as a whole,
and the law of the inverse square had also been pre-

viously stated, but in the hands of Newton the doctrine

of gravitation assumed its final form.

Every portion of matter attracts every other portion

of matter, and the stress between them is proportional to

the product of their masses divided by the square of
their distance.

For if the attraction between a gramme of matter in

the sun and a gramme of matter in a planet at distance
Q

r is
-g where C is a constant, then if there are S grammes

in the sun and P in the planet the whole attraction

between the sun and one gramme in the planet will be
CS

a-, and the whole attraction between the sun and the
r SP
planet will be C

^-.

Comparing this statement of Newton's "Law of
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Universal Gravitation" with the value of F formerly
obtained we find

^SP SP a3

or ^ 2a3 =C(S+P)T2
.

137. AMENDED FORM OF KEPLER'S THIRD LAW

Hence Kepler's Third Law must be amended thus:

The cubes of the mean distances are as the squares
of the times multiplied into the sum of the masses of

the sun and the planet.
In the case of the larger planets, Jupiter, Saturn, etc.,

the value of S + P is considerably greater than in

the case of the earth and the smaller planets. Hence
the periodic times of the larger planets should be some-
what less than they would be according to Kepler's law,
and this is found to be the case.

In the following table the mean distances (a) of the

planets are given in terms of the mean distance of the

earth, and the periodic times (T) in terms of the sidereal

year:

Planet a T a3 712 a3 - T*

Mercury 0-387098 0-24084 0-0580046 0-0580049 -0-0000003
Venus 0-72333 0-61518 0-378451 0-378453 -0-000002
Earth i -oooo r-ooooo i-ooooo i-ooooo

Mars 1-52369 1-88082 3-53746 3-5374? -o-ooooi

Jupiter 5-20278 11-8618 140-832 140-701 +0-131
Saturn 9*53879 29-4560 867-914 867-658 +0-456
Uranus 19-1824 84-0123 7058-44 7058-07 +0-37
Neptune 30-037 164-616 27100-0 27098-4 +1-6

It appears from the table that Kepler's third law is

very nearly accurate, for a3
is very nearly equal to T2

,

but that for those planets whose mass is less than that

of the earth namely, Mercury, Venus, and Mars as

is less than T2
,
whereas for Jupiter, Saturn, Uranus,

and Neptune, whose mass is greater than that of the

earth, a3
is greater than T2

.
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138. POTENTIAL ENERGY DUE TO GRAVITATION

The potential energy of the gravitation between the

bodies S and P may be calculated when we know the

attraction between them in terms of their distance.

The process of calculation by which we sum up the

effects of a continually varying quantity belongs to the

Integral Calculus, and though in this case the calcula-

tion may be explained by elementary methods, we shall

rather deduce the potential energy directly from Kepler's
first and second laws.

These laws completely define the motion of the sun
and planet, and therefore we may find the kinetic energy
of the system corresponding to any part of the elliptic

orbit. Now, since the sun and planet form a conserva-

tive system, the sum of the kinetic and potential energies
is constant, and therefore when we know the kinetic

energy we may deduce that part of the potential

energy which depends on the distance between the

bodies.

139. KINETIC ENERGY OF THE SYSTEM

To determine the kinetic energy we observe that the

velocity of the planet with respect to the sun is by
Article 133 ,

The velocities of the planet and the sun with respect
to the centre of mass of the system are respectively

s
and

P

The kinetic energies of the planet and the sun are

therefore
pz

?
- and

VSp+pp*
and the whole kinetic energy is

i SP i SP h 2
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To determine [more directly] v2 in terms of SP or r,

we observe that by the law of areas

also by a property of the ellipse

HZ.SY=b 2
...... (2),

and by the similar triangles HZP and SYP
SY_HP_ r

HZ
~~

SP
~

2a - r

multiplying (2) and (3) we find

Hence by (i)

and the kinetic energy of the system is

SP (i i

S+P
and this by the equation at the end of Article 136
becomes

where C is the constant of gravitation.
This is the value of the kinetic energy of the two

bodies S and P when moving [relatively] in an ellipse
of which the transverse axis is 2a.

140. POTENTIAL ENERGY OF THE SYSTEM

The sum of the kinetic and potential energies is

constant, but its absolute value is by Article no un-

known, and not necessary to be known.
Hence if we [conclude, in accordance with the con-

stancy of the total energy,] that the potential energy is

of the form TK - C . SP -
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the second term, which is the only one depending on
the distance, r, is also the only one which we have

anything to do with. The. other term K represents the

work done by gravitation while the two bodies originally
at an infinite distance from each other are allowed
to approach as near as their dimensions will allow them.

141. THE MOON is A HEAVY BODY

Having thus determined the law of the force between
each planet and the sun, Newton proceeded to show
that the observed weight of bodies at the earth's surface

and the force which retains the moon in her orbit round
the earth are related to each other according to the

same law of the inverse square of the distance.

This force of gravity acts in every region accessible

to us, at the top of the highest mountains and at the

highest point reached by balloons. Its intensity, as

measured by pendulum experiments, decreases as we
ascend

;
and although the height to which we can ascend

is so small compared with the earth's radius that we
cannot from observations of this kind infer that gravity
varies inversely as the square of the distance from the

centre of the earth, the observed decrease of the inten-

sity of gravity is consistent with this law, the form of

which had been suggested to Newton by the motion of

the planets.

Assuming, then, that the intensity of gravity varies

inversely as the square of the distance from the centre

of the earth, and knowing its value at the surface of the

earth, Newton calculated its value at the mean distance

of the moon.
His first calculations were vitiated by his adopting

an erroneous estimate of the dimensions of the earth.

When, however, he had obtained a more correct value

of this quantity
* he found that the intensity of gravity

* And had demonstrated with great mathematical power the

proposition assumed above, that the gravitation to a globe like

the earth is exactly the same at all external points as if its mass
were condensed to a point at its centre.

82
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calculated for a distance equal to that of the moon was

equal to the force required to keep the moon in her

orbit.

He thus identified the force which acts between the

earth and the moon with that which causes bodies near

the earth's surface to fall towards the earth.

142. CAVENDISH'S EXPERIMENT

Having thus shown that the force with which the

heavenly bodies attract each other is of the same kind

as that with which bodies that we can handle are

attracted to the earth, it remained to be shown that

bodies such as we can handle attract one another.

The difficulty of doing this arises from the fact that

the mass of bodies which we can handle is so small

compared with that of the earth, that even when we

bring the two bodies as near as we can the attraction

between them is an exceedingly small fraction of the

weight of either.

We cannot get rid of the attraction of the earth, but

we must arrange the experiment in such a way that it

interferes as little as is possible with the effects of the

attraction of the other body.
The apparatus devised by the Rev. John Michell * for

this purpose was that which has since received the name
of the Torsion Balance. Michell died before he was able

to make the experiment, but his apparatus afterwards

came into the hands of Henry Cavendishf, who im-

proved it in many respects, and measured the attraction

between [fixed] leaden balls and small balls suspended
from the arms of the balance. A similar instrument

was afterwards independently invented by Coulomb
for measuring small electric and magnetic forces, and it

continues to be the best instrument known to science

for the measurement of small forces of all kinds.

* Of Queens' College, Cambridge, Woodwardian Professor of

Geology, 1762-4. See Memoir by Sir A. Geikie, Cambridge, 1918.

f Of Peterhouse, Cambridge. See his Scientific Writings,
2 vols., Cambridge, 1920.
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143. THE TORSION BALANCE*

The Torsion Balance consists of a horizontal rod

suspended by a wire from a fixed support. When
the rod is turned round by an external force in a

horizontal plane it twists the wire, and the wire being
elastic tends to resist this strain and to untwist itself.

This force of torsion is proportional to the angle

through which the wire is twisted, so that if we cause

a force to act in a horizontal direction at right angles
to the rod at its extremity, we may, by observing the

angle through which the force is able to turn the rod,
determine the magnitude of the force.

The force is proportional to the angle of torsion and
to the fourth power of the diameter of the wire and in-

versely to the length of the rod and the length of the wire.

Hence, by using a long fine wire and a long rod,
we may measure very small forces.

In the experiment of Cavendish two spheres of equal
mass, m, are suspended from the ex-

tremities of the rod of the torsion

balance. We shall for the present

neglect the mass of the rod in com-

parison with that of the spheres. Two
larger spheres of equal mass, Af, are

so arranged that they can be placed
either at M and M or at M' and M'.
In the former position they tend by
their attraction on the smaller spheres,
m and m, to turn the rod of the balance

in the direction towards them. In the

latter position they thus tend to turn it

in the opposite direction. The torsion

balance and its suspended spheres are

enclosed in a case, to prevent their
Fig I?

being disturbed by currents of air.

The position of the rod of the balance is ascertained

* See infra, p. 143.
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by observing a graduated scale as seen by reflexion in

a vertical mirror fastened to the middle of the rod.

The balance is placed in a room by itself, and the

observer does not enter the room, but observes the

image of the graduated scale with a telescope.

144. METHOD OF THE EXPERIMENT

The time, T, of a double vibration of the torsion

balance is first ascertained, and also the position of

equilibrium of the centres of the suspended spheres.
The large spheres are then brought up to the posi-

tions M
, M, so that the centre of each is at a distance

from the position of equilibrium of the centre of the

suspended sphere.
No attempt is made to wait till the vibrations of the

beam have subsided, but the scale-divisions corre-

sponding to the extremities of a single vibration are

observed, and are found to be distant x and y respec-

x y
Fig. 18.

tively from the position of equilibrium. At these points
the rod is, for an instant, at rest, so that its energy is

entirely potential, and since the total energy is constant,
the potential energy corresponding to the position x
must be equal to that corresponding to the position y.
Now if T be the time of a double vibration about the

point of equilibrium o, the potential energy due to

torsion when the scale reading is x is by Article 119

and that due to the gravitation between m and M is by
Article 140
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The potential energy of the whole system in the position
x is therefore

In the positiony it is

and since the potential energy in these two positions
is equal,

a~y a-x
Hence ~, 27r

By this equation C, the constant of gravitation, is

determined in terms of the observed quantities, M the

mass of the large spheres in grammes, T the time of a

double vibration in seconds, and the distances x
y y and

a in centimetres.

According to Baily's experiments, C = 6-5 x io~8 .

If we assume the unit of mass, so that at a distance

unity it would produce an acceleration unity, the centi-

metre and the second being units, the unit of mass
would be about 1-537 x io 7

grammes, or 15*37 tonnes.

This unit of mass reduces C, the constant of gravitation,
to unity. It is therefore used in the calculations of

physical astronomy.

145. UNIVERSAL GRAVITATION

We have thus traced the attraction of gravitation

through a great variety of natural phenomena, and have
found that the law established for the variation of the

force at different distances between a planet and the

sun also holds when we compare the attraction between
different planets and the sun, and also when we compare
the attraction between the moon and the earth with that

between the earth and heavy bodies at its surface. We
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have also found that the gravitation of equal masses at

equal distances is the same whatever be the nature of

the material of which the masses consist. This we
ascertain by experiments on pendulums of different

substances, and also by a comparison of the attraction

of the sun on different planets, which are probably
not alike in composition. The experiments of Baily*
on spheres of different substances placed in the

torsion balance confirm this law.

Since, therefore, we find in so great a number of

cases occurring in regions remote from each other that

the force of gravitation depends on the mass of bodies

only, and not on their chemical nature or physical state,

we are led to conclude that this is true for all substances.

For instance, no man of science doubts that two

portions of atmospheric air attract one another, although
we have very little hope that experimental methods
will ever be invented so delicate as to measure or even
to make manifest this attraction. But we know that

there is attraction between any portion of air and the

earth, and we find by Cavendish's experiment that

gravitating bodies, if of sufficient mass, gravitate

sensibly towards each other, and we conclude that

two portions of air gravitate towards each other. But
it is still extremely doubtful whether the medium of

light and electricity is a gravitating substance, though
it is certainly material and has massf.

146. CAUSE OF GRAVITATION

Newton, in his Principia, deduces from the observed

motions of the heavenly bodies the fact that they attract

one another according to a definite law.

* And more recently with extreme refinement by v. Jolly, Boys,
Eotvos, and many others. Apparent weight is gravitation di-

minished by centrifugal reaction to the earth's rotation: if these

did not vary in the same way for all kinds of matter, delicate

weighings would detect the discrepancy: the experiments of

Eotvos show that it could not exceed five parts in io8
. See infra,

P- 143-

j-
See infra, p. 144.
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This he gives as a result of strict dynamical reasoning,
and by it he shows how not only the more conspicuous
phenomena, but all the apparent irregularities of the

motions of these bodies are the calculable results of

this single principle. In his Principia he confines

himself to the demonstration and development of this

great step in the science of the mutual action of bodies.

He says nothing about the means by which bodies are

made to gravitate towards each other. We know that

his mind did not rest at this point that he felt that

gravitation itself must be capable of being explained,
and that he even suggested an explanation depending
on the action of an etherial medium pervading space.
But with that wise moderation which is characteristic

of all his investigations, he distinguished such specula-
tions from what he had established by observation and

demonstration, and excluded from his Principia all

mention of the cause of gravitation, reserving his

thoughts on this subject for the "Queries" printed at

the end of his Opticks.
The attempts which have been made since the time

of Newton to solve this difficult question are few in

number, and have not led to any well-established

result*.

147. APPLICATION OF NEWTON'S METHOD OF

INVESTIGATION

The method of investigating the forces which act

between bodies which was thus pointed out and exem-

plified by Newton in the case of the heavenly bodies,
was followed out successfully in the case of electrified

and magnetized bodies by Cavendish, Coulomb, and
Poisson.

The investigation of the mode in which the minute

particles of bodies act on each other is rendered more
difficult from the fact that both the bodies we consider

* See Appendix I, infra, p. 140.
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and their distances are so small that we cannot perceive
or measure them, and we are therefore unable to

observe their motions as we do those of planets, or of

electrified and magnetized bodies.

148. METHODS OF MOLECULAR INVESTIGATIONS

Hence the investigations of molecular science have

proceeded for the most part by the method of hypo-
thesis, and comparison of the results of the hypothesis
with the observed facts.

The success of this method depends on the generality
of the hypothesis we begin with. If our hypothesis is

the extremely general one that the phenomena to be

investigated depend on the configuration and motion of

a material system, then if we are able to deduce any
available results from such an hypothesis, we may
safely apply them to the phenomena before us*.

If, on the other hand, we frame the hypothesis that

the configuration, motion, or action of the material

system is of a certain definite kind, and if the results

of this hypothesis agree with the phenomena, then,
unless we can prove that no other hypothesis would
account for the phenomena, we must still admit the

possibility of our hypothesis being a wrong one.

149. IMPORTANCE OF GENERAL AND ELEMENTARY

PROPERTIES

It is therefore of the greatest importance in all

physical inquiries that we should be thoroughly
acquainted with the most general properties of material

systems, and it is for this reason that in this book I

have rather dwelt on these general properties than

entered on the more varied and interesting field of the

special properties of particular forms of matter.

* This is the subject of the next chapter.



[CHAPTER IX]

ON THE EQUATIONS OF MOTION OF A
CONNECTED SYSTEM*

1. IN the fourth section of the second part of his

Mecanique Analytique, Lagrange has given a method
of reducing the ordinary dynamical equations of the

motion of the parts' of a connected system to a number

equal to that of the degrees of freedom of the system.
The equations of motion of a connected system have

been given in a different form by Hamilton, and have
led to a great extension of the higher part of pure

dynamics
1

.

As we shall find it necessary, in our endeavours to

bring electrical phenomena within the province of

dynamics, to have our dynamical ideas in a state fit for

direct application to physical questions, we shall devote

this chapter to an exposition of these dynamical ideas

from a physical point of view.

2. The aim of Lagrange was to bring dynamics under
the power of the calculus. He began by expressing the

elementary dynamical relations in terms of the corre-

sponding relations of pure algebraical quantities, and
from the equations thus obtained he deduced his final

equations by a purely algebraical process. Certain

quantities (expressing the reactions between the parts
of the system called into play by its physical connexions)
appear in the equations of motion of the component
parts of the system, and Lagrange's investigation, as

seen from a mathematical point of view, is a method of

eliminating these quantities from the final equations.
In following the steps of this elimination the mind is

exercised in calculation, and should therefore be kept
* This chapter, now added, is a reprint of Part IV, Chapter v.

of Maxwell's Treatise on Electricity and Magnetism (1873).
1 See Professor Cayley's "Report on Theoretical Dynamics,"

British Association, 1857; and Thomson and Tait's Natural Philo-

sophy [1867].
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free from the intrusion of dynamical ideas. Our aim,
on the other hand, is to cultivate our dynamical ideas.

We therefore avail ourselves of the labours of the

mathematicians, and retranslate their results from the

language of the calculus into the language of dynamics,
so that our words may call up the mental image, not

of some algebraical process, but of some property of

moving bodies.

The language of dynamics has been considerably
extended by those who have expounded in popular
terms the doctrine of the Conservation of Energy, and
it will be seen that much of the following statement is

suggested by the investigation in Thomson and Tait's

Natural Philosophy, especially the method of beginning
with the theory of impulsive forces.

I have applied this method so as to avoid the explicit
consideration of the motion of any part of the system
except the coordinates or variables, on which the

motion of the whole depends. It is doubtless important
that the student should be able to trace the connexion
of the motion of each part of the system with that of

the variables, but it is by no means necessary to do this

in the process of obtaining the final equations, which are

independent of the particular form of these connexions.

The Variables

3. The number of degrees of freedom of a system is

the number of data which must be given in order

completely to determine its position. Different forms

may be given to these data, but their number depends
on the nature of the system itself, and cannot be altered.

To fix our ideas we may conceive the system con-

nected by means of suitable mechanism with a number
of moveable pieces, each capable of motion along a

straight line, and of no other kind of motion. The
imaginary mechanism which connects each of these

pieces with the system must be conceived to be free

from friction, destitute of inertia, and incapable of
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being strained by the action of the applied forces. The
use of this mechanism is merely to assist the imagination
in ascribing position, velocity, and momentum to what

appear, in Lagrange's investigation, as pure algebraical

quantities.
Let q denote the position of one of the moveable

pieces as defined by its distance from a fixed point in

its line of motion. We shall distinguish the values of

q corresponding to the different pieces by the suffixes

i, 2 , etc. When we are dealing with a set of quantities

belonging to one piece only we may omit the suffix.

When the values of all the variables (q) are given, the

position of each of the moveable pieces is known, and,
in virtue of the imaginary mechanism, the configuration
of the entire system is determined.

The Velocities

4. During the motion of the system the configuration

changes in some definite manner, and since the con-

figuration at each instant is fully defined by the values

of the variables
(<?), the velocity of every part of the

system, as well as its configuration, will be completely
defined if we know the values of the variables (q),

together with their velocities ^, or, according to

Newton's notation,
q).

The Forces

5. By a proper regulation of the motion of the vari-

ables, any motion of the system, consistent with the
nature of the connexions, may be produced. In order
to produce this motion by moving the variable pieces,
forces must be applied to these pieces.
We shall denote the force which must be applied to

any variable qr by Fr . The system of forces (F) is

mechanically equivalent (in virtue of the connexions
of the system) to the system of forces, whatever it may
be, which really produces the motion.
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The Momenta

6. When a body moves in such a way that its con-

figuration, with respect to the force which acts on it,

remains always the same (as, for instance, in the case

of a force acting on a single particle in the line of its

motion), the moving force is measured by the rate of

increase of the momentum. If F is the moving force,
and p the momentum,

whence p =
|

Fdt.

The time-integral of a force is called the Impulse of

the force
;
so that we may assert that the momentum is

the impulse of the force which would bring the body
from a state of rest into the given state of motion.

In the case of a connected system in motion, the

configuration is continually changing at a rate depending
on the velocities (q), so that we can no longer assume
that the momentum is the time-integral of the force

which acts on it.

But the increment Sq of any variable cannot be

greater than q'&t, where 8* is the time during which the

increment takes place, and q' is the greatest value of the

velocity during that time. In the case of a system

moving from rest under the action of forces always in

the same direction, this is evidently the final velocity.
If the final velocity and configuration of the system

are given, we may conceive the velocity to be communi-
cated to the system in a very small time Sf, the original

configuration differing from the final configuration by
quantities Sq^, 8q 2 , etc., which are less than qfit,

q 2St, etc. respectively.
The smaller we suppose the increment of time 8t,

the greater must be the impressed forces, but the time-

integral, or impulse, of each force will remain finite.

The limiting value of the impulse, when the time is
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diminished and ultimately vanishes, is defined as the

instantaneous impulse; and the momentum p, corre-

sponding to any variable q, is defined as the impulse
corresponding to that variable, when the system is

brought instantaneously from a state of rest into the

given state of motion.
This conception, that the momenta are capable of

being produced by instantaneous impulses on the system
at rest, is introduced only as a method of defining the

magnitude of the momenta; for the momenta of the

system depend only on the instantaneous state of motion
of the system, and not on the process by which that

state was produced.
In a connected system the momentum corresponding

to any variable is in general a linear function of the

velocities of all the variables, instead of being, as in

the dynamics of a particle, simply proportional to the

velocity.
The impulses required to change the velocities of the

system suddenly from q lt q 2 , etc. to (?/, q2', etc. are

evidently equal to // p lt pz

'

p2 , etc. the changes
of momentum of the several variables.

Work done by a Small Impulse

7. The work done by the force F1 during the impulse
is the space-integral of the force, or

W= ! F,da,

If <?/ is the greatest and <?/' the least value of the

velocity q-^ during the action of the force, W must be
less than r

<?/ Fdt or
<?i_' (PI Pi),

and greater than

Fdt or ji'fa'.-pj.
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If we now suppose the impulse Fdt to be diminished

without limit, the values of fa' and fa" will approach
and ultimately coincide with that of fa, and we may
write Pi p = &pi ; so that the work done is ultimately

or, the work done by a very small impulse is ultimately the

product of the impulse and the velocity.

Increment of the Kinetic Energy

8. When work is done in setting a conservative

system in motion, energy is communicated to it, and
the system becomes capable of doing an equal amount
of work against resistances before it is reduced to rest.

The energy which a system possesses in virtue of its

motion is called its Kinetic Energy, and is communicated
to it in the form of the work done by the forces which
set it in motion.

If T be the kinetic energy of the system, and if it

becomes T+ S7
1

,
on account of the action of an in-

finitesimal impulse whose components are 8p lt 8/> 2 , etc.

the increment 8J1

must be the sum of the quantities
of work done by the components of the impulse, or in

symbols, _

The instantaneous state of the system is completely
defined if the variables and the momenta are given.
Hence the kinetic energy, which depends on the

instantaneous state of the system, can be expressed in

terms of the variables (q), and the momenta
(/>).

This
is the mode of expressing T introduced by Hamilton.

When T is expressed in this way we shall distinguish
it by the suffix v , thus, Tv .

The complete variation of Tv is
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The last term may be written

which diminishes with St, and ultimately vanishes [com-
pared with the first term] when the impulse becomes
instantaneous.

Hence, equating the coefficients of 8p in equations (i)
and (2), we obtain ^T

or, the velocity corresponding to the variable q is the

differential coefficient of Tv with respect to the corre-

sponding momentum p.
We have arrived at this result by the consideration of

impulsive forces. By this method we have avoided the

consideration of the change of configuration during the
action of the forces. But the instantaneous state of the

system is in all respects the same, whether the systemwas

brought from a state ofrest to the given state ofmotion by
the transient application of impulsive forces, or whether
it arrived at that state in any manner, however gradual.

In other words, the variables, and the corresponding
velocities and momenta, depend on the actual state of

motion of the system at the given instant, and not on
its previous history.

Hence, the equation (3) is equally valid, whether the

state of motion of the system is supposed due to impul-
sive forces, or to forces acting in any manner whatever.
We may now therefore dismiss the consideration of

impulsive forces, together with the limitations imposed
on their time of action, and on the changes of configura-
tion during their action.

Hamilton's Equations of Motion

9. We have already shown that
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Let the system move in any arbitrary way, subject to

the conditions imposed by its connexions; then the

variations ofp and q are

8?- $8* ...... (5).

=!*
and the complete variation of Tv is

***)

But the increment of the kinetic energy arises from
the work done by the impressed forces, or

$Tv =X(FSq) ...... (8).

In these two expressions the variations 8q are all

independent of each other, so that we are entitled to

equate the coefficients of each of them in the two

expressions (7) and (8). We thus obtain

where the momentum pr and the force Fr belong to the

variable qr*.

There are as many equations of this form as there are

variables. These equations were given by Hamilton.

They show that the force corresponding to any variable

is the sum of two parts. The first part is the rate

of increase of the momentum of that variable with

respect to the time. The second part is the rate of in-

crease of the kinetic energy per unit of increment of

the variable, the other variables and all the momenta

being constant.
* But see infra, p. 158.
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The Kinetic Energy expressed in Terms of the

Momenta and Velocities

10. Let />!, p2 ,
etc. be the momenta, and q ly q 2J etc.

the velocities at a given instant, and let p t , p2 , etc.,

q x , q 2 ,
etc. be another system of momenta and velocities,

such that . , ^

P!=np lt q 1 =nq lJ etc (10).

It is manifest that the systems p, q will be consistent

with each other if the systems p, q are so.

Now let n vary by 8n. The work done by the force

F1 is [by 7] F
J8q 1 =$ lBp 1 =4 1p 1n8n (n).

Let n increase from o to i
;
then the system is brought

from a state of rest into the state of motion (qp), and the

whole work expended in producing this motion is

rl

etc.)
I

ndn (12).

rl

But ndn=\,

and the work spent in producing the motion is equi-
valent to the kinetic energy. Hence

TA = \ (Mi + Pd* + etc
-) (13),

where Tp -

q
denotes the kinetic energy expressed in

terms of the momenta and velocities. The variables

q lt q 2 , etc., do not enter into this expression.
The kinetic energy is therefore half the sum of the

products of the momenta into their corresponding
velocities.

When the kinetic energy is expressed in this way we
shall denote it by the symbol Tp -

q . It is a function of the

momenta and velocities only, and does not involve the

variables themselves.

1 1 . There is a third method of expressing the kinetic

energy, which is generally, indeed, regarded as the

fundamental one. By solving the equations (3) we may
express the momenta in terms of the velocities, and
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then, introducing these values in (13), we shall have an

expression for T involving only the velocities and the

variables. When T is expressed in this form we shall

indicate it by the symbol T-
q

. This is the form in which
the kinetic energy is expressed in the equations of

Lagrange.
12. It is manifest that, since TP , T-, and 7^, are

three different expressions for the same thing,

or T9 +Ti-p1h-pdt-etc.= o ...(14).

Hence, if all the quantities p, q y
and q vary,

The variations op are not independent of the varia-

tions S<7 and
<><?>

s that we cannot at once assert that

the coefficient of each variation in this equation is

zero. But we know, from equations (3), that

PT1

p-fc-o.etc
.......(.6),

so that the terms involving the variations Bp vanish

of themselves.

The remaining variations S<7 and 8^
are now all

independent*, so that we find, by equating to zero the

coefficients of 8^, etc.,

or, the components of momentum are the differential

coefficients of T-
q with respect to the corresponding

velocities.

* See infra, p. 159.
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Again, by equating to zero the coefficients of 8q lt etc.,

or, /re differential coefficient of the kinetic energy with

respect to any variable q1 is equal in magnitude but opposite
in sign when T is expressed as a function of the velocities

instead of as a function of the momenta.
In virtue of equation (18) we may write the equation

fmotion(9)

d 9Tx an
or *i = j- "arS

-
a~s ...... (20),

dt dfa 8?j

which is the form in which the equations of motion
were given by Lagrange.

13. In the preceding investigation we have avoided

the consideration of the form of the function which

expresses the kinetic energy in terms either of the

velocities or of the momenta. The only explicit form
which we have assigned to it is

Tv
-

q
= H>>i$i + *2& + etc.) ...... (21),

in which it is expressed as half the sum of the products
of the momenta each into its corresponding velocity.
We may express the velocities in terms of the differ-

ential coefficients of Tv with respect to the momenta,
as in equation (3) [ ; thus]

This shows that Tv is a homogeneous function of the

second degree of the momenta /> 1? p 2 , etc.

We may also express the momenta in terms of 7
1

,,

and we find

...... (23 )
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which shows that T^ is a homogeneous function of the

second degree with respect to the velocities q lt q2 ,
etc.

If we write

PH for
|p-j,

and Qn for
gT~2> Qiz for

" **
,etc,

then, since both T-
q
and Tv are functions of the second

degree of q and of p respectively, both the P's and the

Q's will be functions of the variables q only, and inde-

pendent of the velocities and the momenta. We thus
obtain the expressions for T,

*Th
= Piiti

2 + 2P12 9i9 2 + etc. ...(24),

etc. ...(25).

The momenta are expressed in terms of the velocities

by the linear equations

etc....... (26),

and the velocities are expressed in terms of the momenta

by the linear equations

etc....... (27).

In treatises on the dynamics of a rigid body, the

coefficients corresponding to Pn ,
in which the suffixes

are the same, are called Moments of Inertia, and those

corresponding to P12 ,
in which the suffixes are different,

are called Products of Inertia. We may extend these

names to the more general problem which is now
before us, in which these quantities are not, as in the

case of a rigid body, absolute constants, but are func-

tions of the variables q lt q z ,
etc.

In like manner we may call the coefficients of the

form Qn Moments of Mobility, and those of the form
) 12 ,

Products of Mobility. It is not often, however,
that we shall have occasion to speak of the coefficients

of mobility.
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14. The kinetic energy of the system is a quantity

essentially positive or zero. Hence, whether it be ex-

pressed in terms of the velocities, or in terms of the

momenta, the coefficients must be such that no real

values of the variables can make T negative.
There are thus a set of necessary conditions which

the values of the coefficients P must satisfy. These
conditions are as follows:

The quantities Pn ,
P22 ,

etc. must all be positive.
The n i determinants formed in succession from

the determinant

*13>

P P P P*ln> r 2n> -^Sn? *7

by the omission of terms with suffix i
,
then of terms

with either i or 2 in their suffix, and so on, must all be

positive.
The number of conditions for n variables is therefore

2n i.

The coefficients Q are subject to conditions of the

same kind.

15. In this outline of the fundamental principles of

the dynamics of a connected system, we have kept out

of view the mechanism by which the parts of the system
are connected. We have not even written down a set

of equations to indicate how the motion of any part of

the system depends on the variation of the variables.

We have confined our attention to the variables,
their velocities and momenta, and the forces which act

on the pieces representing the variables. Our only
assumptions are, that the connexions of the system are

such that the time is not explicitly contained in the

equations of condition, and that the principle of the

conservation of energy is applicable to the system.
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Such a description of the methods of pure dynamics
is not unnecessary, because Lagrange and most of his

followers, to whom we are indebted for these methods,
have in general confined themselves to a demonstration
of them, and, in order to devote their attention to the

symbols before them, they have endeavoured to banish

all ideas except those of pure quantity, so as not only
to dispense with diagrams, but even to get rid of the

ideas of velocity, momentum, and energy, after they
have been once for all supplanted by symbols in the

original equations. In order to be able to refer to the

results of this analysis in ordinary dynamical language,
we have endeavoured to retranslate the principal

equations of the method into language which may be

intelligible without the use of symbols.
As the development of the ideas and methods of

pure mathematics has rendered it possible, by forming
a mathematical theory of dynamics, to bring to light

many truths which could not have been discovered

without mathematical training*, so, if we are to form

dynamical theories of other sciences, we must have our
minds imbued with these dynamical truths as well as

with mathematical methods.
In forming the ideas and words relating to any

science, which, like electricity, deals with forces and
their effects, we must keep constantly in mind the ideas

appropriate to the fundamental science of dynamics, so

that we may, during the first development of the science,
avoid inconsistency with what is already established,
and also that when our views become clearer, the

language we have adopted may be a help to us and not

a hindrance.

* It has also generalized our conception of dynamics, so that it

is possible to assert that a physical system is of dynamical type
although we may not have been able to form an idea of the con-

figurations and motions that are represented by the variables,
See Appendix II.
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The Relativity of the Forces of Nature

THE idea of the forces of nature was introduced into

science in definite form by Sir Isaac Newton, in the

expression of his Laws of Motion in the Introduction

to the Principia. He specified physical force as recog-
nized and measured by the rate at which the velocity
of the body on which it acts is changing with the time.

This was the simplest measure conceivable; it was

postulated tacitly that the forces so recognized corre-

spond to actual invariant causes of motion, which are

always present, in accordance with the uniformity of

nature, whenever the same conditions ofthe surrounding

system of bodies recur. An underlying question is thus

suggested as to why this particular measure corresponds
to objective nature, and not some more complex one,

involving for example the velocity also, or the rate of

change of the acceleration as well as that of the velocity.
But this introduction of the idea of forces of nature

also gave rise to the practical need of specifying some
definite mode of prescribing velocity and its rate of

change. Position and velocity belong to one system of

bodies in space and time, but are relative to some other

system. The simplest plan is to postulate some standard

system for general reference. Accordingly Newton laid

down a scheme of absolute space and absolute time,
with respect to which the movements and forces in

nature are to be determined. It is then necessary for

dynamical science to determine this scheme of reference

provisionally, for the set of problems in hand, and

continually to correct its specification as the advance of

knowledge requires. Thus for ordinary purposes the

space referred to the surrounding landscape and the

time of an ordinary vibrator will suffice for a standard
;
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but in wider problems when the rotation of the Earth

has to be recognized these are no longer adequate, and
must be replaced by a scheme of space and time which
does not revolve with the Earth; and so on. The
revolution effected by Copernicus, in transferring the

centre of reference from the Earth to the Sun, was thus

a preliminary to this dynamical order of ideas. We can

conceive an ultimate system of space and time as that

frame to which the stars and stellar universes can be

related, so as to secure the greatest simplicity in the

mode of describing their motions. Any frame of space
and time to which the forces of nature are thus con-

sistently referred, with sufficient precision for the

purposes in view, has been named a frame of inertia,

because with respect to it these forces are determined

by the Newtonian product inertia-acceleration. For

ordinary purposes there are many equally approximate
frames of inertia; any uniform motion of translation

of such a frame will make no difference in its practical

efficacy.
This postulation of a standard space and a standard

time in the Principia in 1687 was made with a view to

simple treatment of the motions of the planetary bodies

in space: but it at once excited the criticism of philo-

sophers both at home and abroad, though apparently

they had no practical alternative to offer. The illustrious

Leibniz continued to challenge its validity ;
his epistolary

controversy with Dr Samuel Clarke, who assumed on
abstract principles the championship of the Newtonian

practical formulation, is one of the classics of meta-

physical philosophy. Our own Berkeley as a student at

Trinity College, Dublin, where he was already thinking
out his critical idealist scheme of philosophy, came up
against the same kind of difficulties in his study of the

foundations of the Newtonian system of the world.

Have we any warrant for assigning an absolute frame of

space and time for the laws of nature, especially with

respect to the vast vacant spaces of astronomy? and
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could we have valid means of recognizing any such

frame ? It is perhaps largely a question of expression ;

if philosophers could come to mean the same thing by
the terms they use they ought to agree, otherwise the

universal validity of the operations of the mind might
come into doubt.

The validity of such practical specification of a

standard space and time has remained abstractly an

open question; in recent years it has again come

prominently into discussion. The phenomena of elec-

tricity and light had been thoroughly explained, under
the guidance of Faraday and Clerk Maxwell, in terms

of activities established and propagated in an aether of

space, which is at rest in undisturbed regions so that it

is natural to fit into it the Newtonian frame of space
and time. The aether would thus be space and time

endowed with physical properties, inertia and elasticity,

as well as properties of extension. But it was found
later that very refined and delicate experiments that

seemed qualified to determine the motion of the Earth

relative to the aether and it must be at least of the

order of its orbital velocity round the Sun all failed to

show any result. This was not unexpected, and was in

fact quite explicable on the lines of Maxwell's theory.
But it has stimulated independent trains of thought
which in the end have propounded the question whether
it is possible, at the cost of more complex and pro-
visional modes of reference, to get rid altogether of the

universal forces of nature such as gravitation, whose
sole evidence is the acceleration of motions for which

they are introduced as the cause. Thus if the scale of

time is made to alter from place to place, so that dura-

tion is a function of position, the apparent values of

gravitational accelerations will of course all be changed.
The argument then is that (cf. 103) all bodies in the

same locality possess exactly the same acceleration on
account of gravitation : if this universal feature can be
absorbed into a complex reckoning of space and time,
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and so got rid of, the other relations of physical nature

will merely have to become relative to the slightly
altered reckoning introduced for this purpose. But our

knowledge of physical extension and duration comes

mainly from the sense of sight: little of it would have
been acquired by a race without vision. It is impossible
to ignore the rays of light as messengers of direction

and duration from all parts of the visible universe.

These essential and determining phenomena of radia-

tion also must become mere local features of time and

space, or else they would put us in connexion with a

universal frame with respect to which they are propa-

gated. However that may be, a theory which claims

to be founded on metaphysical principles has recently
been developed by Einstein and a numerous and

important school, in which it is found that the forces

of gravitation, and no other, can be represented with

precision as inherent in a more complicated scheme of

space and time instead of in the physical nature that

that frame helps to describe
;
while at the same time they

thereby fall into line with the electrodynamic doctrines

of relativity above-mentioned.
It has been recognized however also that the same

results can arise naturally, and without involving

revolutionary ideas of time and space, as a slight

(though analytically complex) expansion of the funda-

mental physical formulation of Least Action (infra) ;
the

special relations of stress, energy, and momentum on
which as criteria the theory had to develop being in

fact already implicit on that universal principle.
This alteration in the mode of expression of New-

tonian gravitation of course makes very little practical

difference; it however claimed special notice as re-

moving one outstanding slight discrepancy with obser-

vation, in the motion of the inner planet Mercury,
which had previously to be ascribed to an assumed
distribution of mass between the planet and the Sun.
Such an equivalent warping of the frame of space and
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time must also affect either in reality or in appearance
the propagation of radiation wherever gravitation is

intense. One such inference is that rays of light would
be very slightly deviated in passing close to the Sun : and
the results of the Greenwich and Cambridge astronomers
who observed the solar eclipse of 1919 have in fact

confirmed the required amount rather closely. But
another result of such an order of ideas, of a spectro-

scopic character, still lacks any definite confirmation.

The primary desideratum as regards gravitation was
to find a mathematical mode of expression which would

bring it into touch with the theory of electrical agencies
and of radiation, from which it had been isolated, and

even, as regards the nature of the relation of inertia to

weight, in very slight discord. This has been done by
ascribing the acceleration common to all bodies merely
to an altering frame of reference, instead of the intro-

duction into ordinary space of an intrinsic gravitational

potential function indicating an independent type of

local activity. For velocities very large, thousands of

times greater than the actual speeds of the heavenly
bodies, the results of this view would be quite different

from the simple Newtonian gravitation, and with our
means of expression they would be of extreme compli-
cation : but in the actual stellar world the difference is

excessively slight, and in the right direction. So far

from replacing Newtonian astronomy it can only
establish connexion with reality by making use of its

representations and methods. We may perhaps con-
clude that the linking up of gravitation, previously
isolated, with other physical agencies has been effected :

but we ought not to exclude a hope that the mode of

expression of this connexion may in time be greatly

simplified, especially by more attention to the Principle
of Action, as it is only very small changes that are in-

volved. Meantime the extrapolation, based on the pre-
sent general formulation of the theory, to exploration
of universes involving far higher speeds than the stars
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possess in our own, is a fascinating subject for abstruse
mathematical speculation.

The general doctrine of relativity, at any rate in its

more extreme formulations, impugns the validity of

arguments such as those of 105-6. This question must
relate to the meanings of the parties to a controversy. If

we were shut off from sight of the stars there might be

greater reason for claiming that it would be unphilo-

sophic even to mention such a thing as an absolute

rotation of the Earth, or any movement that could not

be expressed as conditioned by adjacent bodies. That

type of theory claims to settle all things by local scale

and clock : but it also has in practice to requisition the

use of the directions and periodic times of rays of light
as valid means of discrimination. Unless the rays are

to bend to the control of scale and clock, these measures
will not be concordant: if they do, the connexion may
be held to fix the frame with respect to which the rays
travel with their assumed universal velocity, and thus

to determine in part what has been regarded as the

aether of space. An artificial gravitational field could

be simulated by accelerating the frame of reference,

provided it is not done by a mere algebraic change of

coordinates : but the rays of light might have different

speeds in it forward and backward, which would seem
to involve a discriminating criterion for any such un-
restricted "principle of equivalence

"
of a gravitational

field to a changing frame. Any purely algebraic theory
is an abstraction from the wider field of phenomena,
and an essential question for it is the range of its own

validity.

Note to 145

As the mean result of numerous modern determina-

tions Cavendish's value 5-45 for the mean density of

the Earth has to be increased by less than two per cent.

The torsion apparatus has been very greatly reduced
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in size and improved by C. V. Boys (1894) by use of

his extremely fine and perfectly elastic quartz fibres

for the torsional suspension.
The Michell-Cavendish-Coulomb torsion balance

has been applied by Eotvos to test the proportionality
of gravitation to mass, with results of extreme precision.
The apparent weight of a body is its gravitation to the

Earth as modified by a centrifugal force which is

oblique to the vertical, being directed away from the

axis of the diurnal rotation. The latter part is of course

considerable, being a fraction of one per cent, of the

whole; and it has a horizontal component along the

meridian. If the mass factors in the two parts were not

exactly equal a torsion balance, with the ends of its

horizontal bar loaded by masses of different substances,
would indicate a deflection of the bar relative to its frame
when it is turned round the vertical from east-west

to west-east. Eotvos (1891, 1897) thus found that any
defect of proportionality of weight to mass must actually
be less than one part in twenty million : and Zeeman, by
a reduced apparatus with quartz-fibre suspension, has

recently (1917) pushed the result still lower and extended
it to crystals and to substances of radioactive origin.
As it happens, this is nearly to the same order as the

optical and electric verifications of absence of effects of

convection through the aether owing to the Earth's

motion.
If m is the inertia-mass of the centrifugal force and

m' the mass which gravitates, then if m were equal to

m' the apparent weight would be in the same direction

for all substances and the experiment would show no
result. Any possible result would thus be readily com-

puted as that due to the centrifugal force of the excess

m m',the moment of its horizontal component round
the axis of torsion operating different ways in the two

positions of the bar and frame.

It is a consequence of Maxwell's electrodynamics
that when a body loses energy e by radiation it loses
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inertia of amount c/c
2

,
where c is the velocity of light.

In modern extensions of that theory all energy has

inertia. The inertia of an electron seems to be all

associated with its steady kinetic energy of motion.

The closeness of the Eotvos result thus carries the

conclusion that the inertia of an electron must all

gravitate, and in fact that all energy possesses inertia

which is also gravitative. Thus neither inertia nor

gravitation could continue to be specific constants of

matter: they must be connected up either with the

aether in which matter subsists, or with the abstract

reference-frame of space-time which is all that can

remain if such a medium is denied.
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The Principle of Least Action

THE great desideratum for any science is its reduction to

the smallest number of dominating principles. This

has been effected for dynamical science mainly by Sir

William Rowan Hamilton, of Dublin (1834-5), building
on the analytical foundations provided by Lagrange in

the formulation of Least Action in terms of the methods
of his Calculus of Variations (1758), and later (1788)
but less fundamentally for physical purposes on the

principle of virtual work in the Mecanique Analytique.
The principle of the Conservation of Energy, inas-

much as it can provide only one equation, cannot

determine by itself alone the orbit of a single body,
much less the course of a more complex system (thus

107-112 above need some qualification). But if the

body starts on its path from a given position in the

field of force and with assigned velocity, the principle
of energy then determines the velocity this body must
have when it arrives at any other position, either in the

course of free motion or under guidance by constraints

such as are frictionless and so consume no energy. If

W, a function of position, represents the potential

energy of a body in the field, per unit mass, the velocity
v of the body is in fact determined by the equation

\rmf- + mW= \mv + mWQ
= mE,

where the subscripts in v and W refer to the initial

position; and mE is the total energy of the body in

relation to the field of force, which is conserved through-
out its path. Thus

V= (2E-2W)^\
so that the velocity v depends, through W, on position
alone.

Now we can propound the following problem. By
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what path must the body, of mass m, be guided under
frictionless constraint from an initial position A to a

final position B in space, with given conserved total

energy mE, so that the Action in the path, defined as

the limit of the sum ZmvSs, that is as
|

mvds, where Ss

is an element of length of this path, shall, over each

stage, be least possible? The method of treating the

simpler problems of this kind is known to have been
familiar to Newton : in the case of the present question,
first vaguely proposed by Maupertuis* when President

of the Berlin Academy under Frederic the Great, the

solution was gradually evolved and enlarged by the

famous Swiss mathematical family of Bernoulli and
their compatriot Euler : and finally, extended to more

complex cases, it gave rise, after Euler's treatise of date

1744, in the hands of the youthful Lagrange (Turin
Memoirs, 1758) to the Calculus of Variations, the most
fruitful expansion of the processes of the infinitesimal

calculus, for purposes of physical science, since the time

of Newton and Leibniz.

Let us draw in the given field of force a series of

closely consecutive surfaces of constant velocity, and
therefore of constant potential energy mW: and let us

consider an orbit ABCD. . . intersecting these surfaces at

the points B, C, D, We shall regard, in the Newtonian

mannerf, the velocity as constant, say vlt in the in-

finitesimal path from B to C, and constant, say v2 ,
from

C to D : these elements of the path are thus to be re-

garded as straight, the field of force being supposed to

operate by a succession of very slight impulses at B,
C, D, ... such as in the limit, as the elements of the path
diminish indefinitely, will converge to the continuous

operation of a finite force.

* The notion of an Action possibly with minimal quality, not

merely passive inertia, as concerned in the transmission of

Potentia or energy, is ascribed to Leibniz by Helmholtz in 1887.

f Cf. Principia, Book i, Sec. n, Prop, i, on equable description
of areas in a central orbit.
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If ZvSs is to be a minimum over this section ABCD. . .

of the path, then by the usual criterion any slight altera-

tion, by frictionless constraint, which would compel the

body to take locally an

adjacent course BC'D, \

A

ought not to alter the

value of the Action so far

as regards the first order
of small quantities. Now,
on our representation of

the force as a rapid suc-

cession of small impulses,
the change so produced in

the value of this function of Action is equal to

^ (EC'
- BC) + v2 (C'D

- CD)
hence this must vanish, up to the first order. But
BC' - BC is equal to - CC' cos BCC', and C'D - CD
is equal to CC' cos DCC'. Thus the condition for a

stationary value is that the component of v^ along CC'
is equal to the component of v2 along the same direction,
where CC' is any element of length on the surface of

constant v, that is of constant W, drawn through C.
This involves that the impulse which must be imparted
to the body at C in order to change its velocity from
v to v2 must be wholly transverse to this surface: or,
on passing to the limit, that the force acting on the

body must everywhere be in the direction of the

gradient of the potential W. That is, whatever the form
of this potential function may be, the succession of

impulses must be in the direction of its force; it is

already prescribed by the form of v that they are of

the amounts necessary to make changes in the velocity
that are in accord with conservation of energy. These
are just the criteria for a free orbit. Hence for any short
arc of any free orbit the Action mZvSs is smaller than
it could be if the orbit were slightly altered locally

owing to any frictionless constraint. The free orbit is
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thus describable as the path of advance that would be
determined by minimum expenditure of Action in each

stage, as the body proceeds: though this does not imply
that the total expenditure of Action from one end to

the other of a longer path is necessarily or always the

least possible. This formula of stationary (or say mini-

mal) Action, expressed by the variational equation

8 mvds = o, where \mi?- + mW = mE,

is by itself competent to select the actual free orbit

from among all possible constrained paths.
And generally, for any dynamical system having kinetic

energy expressed by a function T of a sufficient number
of geometrical coordinates, and potential energy ex-

pressed by W, it can be shown that the course of

motion from one given configuration to another is com-

pletely determined by the single variational equation

SJTdt
= o subject to T + W = E,

E being the total energy, which is prescribed as con-

served, so that the variations contemplated in the

motion must be due only to frictionless constraints.

Another form of the principle is that

7 - W)dt=o

provided the total time of motion from the given initial

to the given final configuration is kept constant. This
form is more convenient for analytical purposes because

the mode of variation is not restricted to frictionless

constraint ;
as conservation of the energy is not imposed,

extraneous forces, which can be included in a modifica-

tion of W, may be in operation imparting energy to the

system. Constancy of the time of transit, which here

takes the place of conservation of the energy, is analyti-

cally, though not physically, a simpler form of restriction.

From this form the complete set of general equations
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of motion developed by Lagrange (see p. 133) is

immediately derived by effecting the process of varia-

tion.

If T is a homogeneous quadratic function of the

generalized components of velocity, T^dt is a quadratic
function of infinitesimal elements of the coordinates:

therefore the first form when expressed (after Jacobi) as

does not any longer involve the time. It thus determines

the geometrical relations of the path of the system
without reference to time ;

for a simple orbit it reduces

to the earliest form investigated above.

In the modern discussions of the fundamental prin-

ciples of dynamics, especially as regards their tentative

adaptation to new regions of physical phenomena
whose dynamical connexions are concealed, this prin-

ciple of variation of the Action, which condenses the

whole subject into a single formula independent of any
particular system of coordinates, naturally occupies the

most prominent place.

As a supplement to Chapter IX, these statements of

the Principle of Action will now be established for a

general dynamical system. This can be done most

simply and powerfully by introducing the analytical
method of Variations, invented by Lagrange as above
mentioned.
The principle, as already deduced for the simplest

case, relates to the forms of paths or orbits : if it is also

to involve the manner in which the orbits are described
the time must come in. The criterion of a free path was

that 8 I vds = o with energy E constant throughout the

motion : it is the same as 8 tfdt = o under the same
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condition; or, writing T for the kinetic energy

it is 8
I

zTdt = o under the same restriction to constancy

of the total energy.
Let us conduct the variation directly from this latter

form, but now keeping the time unvaried,

f (dx dSx dy dSy ,

dz dSz\ ,
t=

]
m (dt^ + dt^t

+ dtW)
dt

in which d is the differential of x as the body moves

along its orbit with changing time, but Sx is the

variation of the value of x as we pass from a point on
the orbit to a corresponding point on the adjacent pos-
sible path that is compared with it. The introduction of

different symbols d and 8 to discriminate these two

types of change is the essential feature of the Calculus

of Variations : we have already used the fundamental
relation 8dx = dSx. Integrating now by parts, in order

to get rid of variations of velocities which are not inde-

pendent variations and so not arbitrary, we obtain

[= dx
<j, dy <j.

dz
JT ox -f- m -j~ oy -\- tn -j-
dt dt * dt

in this the first term represents the difference of the

values at the upper and lower limits of the integral,
indicated by subscripts 2 and i, which correspond to

the final and initial positions of the body. The second
term is equal to

-(X8x+

where (X, Y, Z) is the effective force acting on the par-
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tide w, as determined by the acceleration which the

particle acquires.
We can extend this equation at once to any system of

particles in motion under both extraneous and mutual
forces. If there are no forces exerted from outside the

system, but only an internal potential energy expressed

by a function W, then the work of the internal forces

of the system tends to exhaust this energy, so that

2 (XSx + YSy + XSz) = - SW,

and this holds good whether the algebraic equations

expressing the constraints contain t or not.

Thus if T now represents the total kinetic energy,
and all the forces are internal, we can write, for variation

from a free path to any adjacent path by frictionless

constraint, and with times unvaried,

Strictly, this result has been obtained for a system of

separate particles influencing each other by mutual
forces. It is natural to expand it to any material system
consisting of elements of mass subject to mutual forces,

thus including the dynamics of elastic systems. The
ultimate analysis of the element of mass is into mole-
cules or atoms in a state of internal motion: that

final extension would include the dynamical theory of

heat.

We can now express all the coordinates x, y, z of

the particles or elements of mass in terms of any suffi-

cient number of independent quantities 6, (/>, ^, ...

which determine the position and configuration of the

system as restricted by its structure. Their number
is that of the degrees of freedom of the system. The
equations which express x, y, z in terms of them may
involve / explicitly, for the equation of virtual work
involves the displacements possible at given time

;
thus

the new form of T W can contain t . Then we can
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assert that when / is not varied, and the time limits

tj_
and tz are therefore constant,

when the frictionless variation is taken between fixed

initial and final positions of the dynamical system.
This quantity T W is the Lagrangian function L

defining by itself alone the dynamical character of the

system : the function Lor W T is thus the potential

energy W as modified for kinetic applications, and has

been appropriately named by Helmholtz the kinetic

potential of the system. Thus the particular case of

a system at rest is included: for

or ^Wdt is equal to
BWJdt

as W remains constant during the time: hence the

equation of Action asserts in this case that

SfP-o,
which comprehends the laws of Statics in the form
that the equilibrium is determined by making the

potential energy stationary. For stability it must be
minimum.

Again, as Lis expressed as a function of the generalized
coordinates 6, <f>,

... and their velocities,

where # represents -j- ,
and 80 is equal to j 80 ' thus

integrating by parts as before

2T 2

As the left side vanishes, when the terminal positions
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are unvaried, for all values of the current variations

80, 8c/>, ..., and these are all independent and arbitrary,
the coordinate quantities 6, </>,

... being just sufficient

to determine the system, the coefficient of each of these

variations must vanish separately in the integrand. Thus
we obtain a set of equations of type

d_dL _3L =
dt 36 W

~

which are the Lagrangian equations of motion of any
general dynamical system (20, p. 133 supra). If there are

in addition extraneous forces in action on the system,
the appropriate component force Fe , defined as that

part whose work F686 is confined to change of the one
coordinate 6, must be added on the right-hand side.

These applied forces may vary with t in any manner:

they can be merged in W by addition of terms F6B ...

to it: their presence will prevent the energy of the

system from remaining constant.

Ifwe restrict this comparison ofpaths to variationfrom
a free path of the system to adjacent free paths, we have

i f Ldt =
It,

now as an exact equation, and so capable of further

differentiation
;
and it provides the basis of the Hamil-

tonian theory of varying Action.

It will be convenient at this stage to remove the

restriction that the time is not to be varied : to allow for

this change we must substitute in the equation in

place of 86 the expression 86 68t which deducts from
the total variation of 6 that part of it which arises from
the motion in the interval of varied time 8t. We must
also add L8t in order to include in the time of transit

the new interval of time 8t added on at the end by
the variation. Thus now

8 f L8t = L8t + *.- (86
-

68t)



154 APPENDIX II

Also L = T W\ and T being a homogeneous
quadratic function,

(

hence 8 f Ldt = d
-k 80 + . 8<f> + ... - ESt

Jit 38 dj>

where E is the final value of the total energy T + W.
When no extraneous forces are supposed to be in

action E is constant at all times : thus

Hence, transposing the last term, the alternative form

arises,
ft

I

for variations throughout which the energy is conserved.

This is the generalization of the previous form

8 mvds = o for a particle, except that now the time also

is involved, and is determined as dAJdE, where A is the

time integral of 2T as expressed in terms of initial and
final configurations and the conserved energy.

This involves the analytical result that if 0, O, ... are

the momenta* corresponding to the coordinates 6, <, ...,

then there must exist a certain function A (of form
however that is usually difficult to calculate) of

By <f>,
... E, such that in varying from the free path to

adjacent free paths of the system,

A more explicit and wider form, especially for optical

applications, is immediately involved in this formula,

* The subscript notation of Chapter ix would here be incon-

venient.
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that there is a function A
|J

of the initial and final con-

figurations of the system and the energy, such that

... + (t2
-

*j) SE.

There also exists a function Pl^ of the final and initial

r<2

coordinates and the time
, equal in value to

| (T-W)dt,
such that

- 0^ - O^ - ... - E2St2 +

on varying from any free orbit to adjacent free orbits
;

but now as there is no restriction to E remaining con-

stant along an orbit, the forces may be in part extraneous

forces whose work will impart new energy to the system.
The mere fact that such a function P or A exists

involves a crowd of reciprocal differential relations

connecting directly the initial and final configurations
of the system or a group of systems, of type such as

which are often the expression of important physical
results. Moreover in the form of SP, and therefore in

such resulting relations, the final set of coordinates may
be different from the initial set.

The influence of disturbing agencies on any dy-
namical system, whose undisturbed path was known, is

by these principles reduced to determining by approxi-
mation (from a differential equation which it satisfies)

the slight change they produce in this single function

P or A which expresses the system, a method perfect
in idea but amenable to further simplifications in

practice.
This beautiful theory of variation of the Action from

any free path to the adjacent ones was fully elaborated

by Hamilton in a single memoir in two parts (Phil
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Trans., 1834 and 1835), and soon further expanded in

analytical directions by Jacobi and other investigators.
It brings a set of final positions of a dynamical system
into direct relations with the corresponding initial posi-

tions, independently of any knowledge whatever of the

details of the paths of transition. In connexion with the

simplest case of orbits it has been characterized by
Thomson and Tait as a theory of aim, connecting up,
so to say, the deviations on a final target, arising from

changes of aim at a firing point, with the correspond-

ing quantities of the reversed motion. In geometrical

optics, from which the original clue to the theory came,
where the rays might be regarded as orbits of imagined
Newtonian corpuscles of light, it involves the general
relations of image to object that must hold for all types
of instrument, as originally discovered by Huygens and

by Cotes. Its scope now extends all through physical
science.

In certain cases the number of coordinate variables

required for the discussion of a dynamical problem can
be diminished. Thus if the kinetic potential involves

one or more coordinates only through their velocities,

the corresponding equations of motion merely express
the constancy throughout time of the momentum that

is associated with each such coordinate: this holds for

instance for the case of freely spinning flywheels
attached to any system of machinery, and for all other

cases in which configuration is not affected by the

changing value of the coordinate. In all such cases the

velocity can be eliminated, being replaced by its

momentum which is a physical constant of the motion.

The kinetic potential can thus be modified (Routh,
Kelvin, Helmholtz) so as to involve one or more variables

the less, but still to maintain the stationary property of

its time-integral. It is now no longer a homogeneous
quadratic, but involves terms containing the other

velocities to the first degree, multiplied of course by
these constant momenta as all the terms must be of the
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same dimensions. Every such kinetic potential belongs
to a system possessing one or more latent unchanging
(steady) motions

;
and a general theory of this important

physical class of systems, and of the transformation of

their energies, arises.

Infactif
L' = L-T^-...

where ^ ... are a group of coordinates and ^Y ... the

related momenta, then

in which the first term vanishes identically, while 8XL
is the variation of L with regard to the remaining
variables. Hence if L do not involve the coordinates

/r
. . . , so that T ... are constant and are not made subject

to variation, and $ ... are eliminated from L' by intro-

duction of T, ... then

3
\L'dt

=
|

080+ 080 + ... - ESt

depending only on the variations of the explicit co-

ordinates at the limits, provided *F ... are kept un-

varied, or the flywheels of the system are not tampered
with.

Although the cyclic coordinates do not appear at all

in L, yet it is only in terms of L' modified as here that

we can avoid their asserting themselves in the domain
of varying Action.

The ultimate aim of theoretical physical science is to

reduce the laws of change in the physical world as far

as possible to dynamical principles. It is not necessary
to insist on the fundamental position which the kinetic

potential and the stationary property of its time-integral
assume in this connexion. Two dynamical systems
whose kinetic potentials have the same algebraic form
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are thoroughly correlative as regards their phenomena,
however different they may be in actuality. If any range
of physical phenomena can be brought under such a

stationary variational form, its dynamical nature is

suggested: there still remains the problem to extricate

the coordinates and velocities and momenta, and to

render their relations familiar by comparison with

analogous systems that are more amenable to inspection
and so better known.

Note on Chapter IX, 9.

It has appeared above, as Lagrange long ago em-

phasized, that the principle of Conservation of Energy
can provide only one of the equations that are required
to determine the motion of a dynamical system. It

follows that the reasoning of this section ( 9), which
seems to deduce them all, must be insufficient. The
argument there begins by supposing the system to move
in any arbitrary way; that is, it assumes motions deter-

mined by the various possible types of frictionless

constraint that are consistent with the constitution of

the system. The equation (9) is then derived correctly
from (7) and (8), as the variations Bq are fully arbitrary.
But the imposed constraints introduce new and un-
known constraining forces which must be included in

the applied forces Fr \
and they would make the result,

so far as there demonstrated, nugatory.
The equations (9) are however valid, though this

deduction of them fails. As explained above, the La-

grangian equations (20) are derivable immediately from
the Principle of Least Action, independently established

as here: and then the equations (9) can be derived

by reversing the argument.
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The procedure of 12 seems to lead to a noteworthy
result. It asserts that if

F T 4- T- -2.T* *
j>
T- -L

q *J- vq

then the single relation

involves all the equations connecting coordinates,
velocities and momenta in the system. This will remain
true when the three sets of variables, regarded still as

independent, are changed to new ones by any equations
of transformation, so that this threefold classification

into types becomes lost. Now there are cases in which
the steady motion of a system, or an instantaneous

phase of a varying mode of change, can be thoroughly
explored experimentally, leading to the recognition say
of yi physical quantities of which only 2 can be

independent; but it is not indicated by our knowledge
how we are to deduce from them a scheme of n coordi-

nates, n corresponding velocities, and n momenta. We
have arrived at the result that in every such case a

function F must exist, and is capable of construction,
such that 8F = o provides a set of %n equations con-

taining all the knowledge that is needed. The relations

(treated after Maxwell) of a network of mutually
influencing electric coils carrying currents would form
an example.

In cognate manner we may assert another type of

equation of Variation of Action

where Tv
'

q
= |2gp, containing n coordinates q, their

n velocities q and their n momenta/). For this equation
is equivalent to



160 APPENDIX II

leading on integration by parts as usual to two sets of

relations of the types

dp

4 = _??_
dt~ ~d

if in it the momenta and coordinates are regarded as

independent variables. As
->p

=
^p by (18), the

second set are the Lagrangian dynamical equations (20).
Thus we have here a single function

involving coordinates and their velocities, linear in the

latter, and an equal number of quantities/) of the nature

of momenta, the coordinates and momenta being thus

independent variables, such that the relation

# = o

leads both to the identification of the relations in which
the momenta stand to the coordinates and to the

dynamical equations of motion of the system.
This result is virtually the same as equation 12 a in

Hamilton, Phil. Trans., 1835, p. 247. In Helmholtz's
memoir on Least Action, Crelle's Journal, vol. 100

(1886), Collected Papers, vol. iii, p. 218 another function

is introduced, apparently with less fitness, in which the

velocities are regarded as independent of their coordi-

nates but the momenta are the gradients of L with

regard to the velocities. Cf. also Proc. Lond. Math. Soc.,

1884.
A main source of the great power of these dynamical

relations of minimal or stationary value, as exploring

agents in physical science, is that the results remain
valid however the physical character of the functions

involved may be disguised by transformation to new
variables, given in terms of the more fundamental

dynamical ones by any equations whatever. This func-
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tion
(j> may thus be expressed in terms of 2 quantities

which are in any way mixed functions of coordinates

and momenta and their gradients with respect to time

remaining a linear function of the latter and subject to

other limitation and the equation 8 <f>dt
= o will still

subsist and will express all the dynamical relations of

the physical system.
The existence of a variational relation of this type

may be taken as the ultimate criterion that a partially

explored physical system conforms to the general laws of

dynamics ;
while from its nature the coordinate quantities,

in terms of which the configuration and motion of the

system happen to be expressed, shrink to subsidiary

importance.
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change to kinetic, 59; speci-
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49; derived from energy,
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of, 109, in; of the Moon,
115; cause of, 121; absorbed
into time, 142; influence on

light, 141; proportional to

inertia, 34, 143
Gravity, measurement of, 101

Hamilton, W. R., 155; his

dynamical equations, 129
Heat as energy, 73
Hodograph, 107

Impulse, 37; work of, 127
Inertia, 29; frame of, 30;

specification of, 134; in-

creases with speed, 141; of

energy, 144

Kepler's laws, 106
Kinetic energy, calculation of,

62; limits of available, 63;
of planets, 113

Kinetic potential, 152

Lagrange, J. L., 146;
dynamical equations,

his

133.

153
Latent motions, 156
Laws of motion, 27, 137
Laws of nature, 13
Least Action, 145; for orbit,

147; fundamental in physics,

Lei
157, 160

sibniz, G. W., 138

Mass, measure of, 33; vector,

44; centre of, 45; and force,

49
Mass-area, 50, 105
Material system, 2, 89
Medium, physical, 67
Mobility, specification of, 134
Moment, 51
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Momentum, 38, 56; vector, 46;

change of, 48; angular, 51;
conserved, 53; general com-

ponents, 126, 131; in terms
of velocities, 132

Newton, I. passim ;
his method,

122

Orbit, 107, 147

Pendulum, 97; solid reversible,

99; Foucault's, 87; conical,

87
Physical Science, i, 71, 74, 161

Position, 7
Potential, kinetic, 152

Rates of change, 20, 24
Reaction, 40, 70
Reciprocal relations, 155

Relativity, general, 22, 25,

29, 67, 82, 83, 137
Rotation, test of absolute, 84;

by gyrostat, 86

Space and time, 9, 31, 138
Strain, 40
Stress, 27, 40

Units, 35

Variations, method of, 150
Varying action, 153
Vectors, 4; addition of, 6
Velocities derived from mo-

menta, 129
Velocity, 19; diagram, 20
Vibrations, 94; as measure of

force, 95; isochronous, 95;
counting of, 102

Work, 54, 56, 75, 127
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